The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Overview

Energy-based Conditional Generative Adversarial Network (ECGAN)

This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers". The repository is modified from StudioGAN. If you find our work useful, please consider citing the following paper:

@inproceedings{chen2021ECGAN,
  title   = {A Unified View of cGANs with and without Classifiers},
  author  = {Si-An Chen and Chun-Liang Li and Hsuan-Tien Lin},
  booktitle = {Advances in Neural Information Processing Systems},
  year    = {2021}
}

Please feel free to contact Si-An Chen if you have any questions about the code/paper.

Introduction

We propose a new Conditional Generative Adversarial Network (cGAN) framework called Energy-based Conditional Generative Adversarial Network (ECGAN) which provides a unified view of cGANs and achieves state-of-the-art results. We use the decomposition of the joint probability distribution to connect the goals of cGANs and classification as a unified framework. The framework, along with a classic energy model to parameterize distributions, justifies the use of classifiers for cGANs in a principled manner. It explains several popular cGAN variants, such as ACGAN, ProjGAN, and ContraGAN, as special cases with different levels of approximations. An illustration of the framework is shown below.

Requirements

  • Anaconda
  • Python >= 3.6
  • 6.0.0 <= Pillow <= 7.0.0
  • scipy == 1.1.0 (Recommended for fast loading of Inception Network)
  • sklearn
  • seaborn
  • h5py
  • tqdm
  • torch >= 1.6.0 (Recommended for mixed precision training and knn analysis)
  • torchvision >= 0.7.0
  • tensorboard
  • 5.4.0 <= gcc <= 7.4.0 (Recommended for proper use of adaptive discriminator augmentation module)

You can install the recommended environment as follows:

conda env create -f environment.yml -n studiogan

With docker, you can use:

docker pull mgkang/studiogan:0.1

Quick Start

  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPU 0
CUDA_VISIBLE_DEVICES=0 python3 src/main.py -t -e -c CONFIG_PATH
  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPUs (0, 1, 2, 3) and DataParallel
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -c CONFIG_PATH

Try python3 src/main.py to see available options.

Dataset

  • CIFAR10: StudioGAN will automatically download the dataset once you execute main.py.

  • Tiny Imagenet, Imagenet, or a custom dataset:

    1. download Tiny Imagenet and Imagenet. Prepare your own dataset.
    2. make the folder structure of the dataset as follows:
┌── docs
├── src
└── data
    └── ILSVRC2012 or TINY_ILSVRC2012 or CUSTOM
        ├── train
        │   ├── cls0
        │   │   ├── train0.png
        │   │   ├── train1.png
        │   │   └── ...
        │   ├── cls1
        │   └── ...
        └── valid
            ├── cls0
            │   ├── valid0.png
            │   ├── valid1.png
            │   └── ...
            ├── cls1
            └── ...

Examples and Results

The src/configs directory contains config files used in our experiments.

CIFAR10 (3x32x32)

To train and evaluate ECGAN-UC on CIFAR10:

python3 src/main.py -t -e -c src/configs/CIFAR10/ecgan_v2_none_0_0p01.json
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN-Mod StudioGAN 9.746 8.034 0.995 0.994 - - -
ContraGAN StudioGAN 9.729 8.065 0.993 0.992 - - -
Ours - 10.078 7.936 0.990 0.988 Cfg Log Link

Tiny ImageNet (3x64x64)

To train and evaluate ECGAN-UC on Tiny ImageNet:

python3 src/main.py -t -e -c src/configs/TINY_ILSVRC2012/ecgan_v2_none_0_0p01.json --eval_type valid
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN-Mod StudioGAN 11.998 31.92 0.956 0.879 - - -
ContraGAN StudioGAN 13.494 27.027 0.975 0.902 - - -
Ours - 18.445 18.319 0.977 0.973 Cfg Log Link

ImageNet (3x128x128)

To train and evaluate ECGAN-UCE on ImageNet (~12 days on 8 NVIDIA V100 GPUs):

python3 src/main.py -t -e -l -sync_bn -c src/configs/ILSVRC2012/imagenet_ecgan_v2_contra_1_0p05.json --eval_type valid
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN StudioGAN 28.633 24.684 0.941 0.921 - - -
ContraGAN StudioGAN 25.249 25.161 0.947 0.855 - - -
Ours - 80.685 8.491 0.984 0.985 Cfg Log Link

Generated Images

Here are some selected images generated by ECGAN.

Owner
sianchen
Ph.D. student in Computer Science at National Taiwan University
sianchen
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022