The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Overview

Energy-based Conditional Generative Adversarial Network (ECGAN)

This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers". The repository is modified from StudioGAN. If you find our work useful, please consider citing the following paper:

@inproceedings{chen2021ECGAN,
  title   = {A Unified View of cGANs with and without Classifiers},
  author  = {Si-An Chen and Chun-Liang Li and Hsuan-Tien Lin},
  booktitle = {Advances in Neural Information Processing Systems},
  year    = {2021}
}

Please feel free to contact Si-An Chen if you have any questions about the code/paper.

Introduction

We propose a new Conditional Generative Adversarial Network (cGAN) framework called Energy-based Conditional Generative Adversarial Network (ECGAN) which provides a unified view of cGANs and achieves state-of-the-art results. We use the decomposition of the joint probability distribution to connect the goals of cGANs and classification as a unified framework. The framework, along with a classic energy model to parameterize distributions, justifies the use of classifiers for cGANs in a principled manner. It explains several popular cGAN variants, such as ACGAN, ProjGAN, and ContraGAN, as special cases with different levels of approximations. An illustration of the framework is shown below.

Requirements

  • Anaconda
  • Python >= 3.6
  • 6.0.0 <= Pillow <= 7.0.0
  • scipy == 1.1.0 (Recommended for fast loading of Inception Network)
  • sklearn
  • seaborn
  • h5py
  • tqdm
  • torch >= 1.6.0 (Recommended for mixed precision training and knn analysis)
  • torchvision >= 0.7.0
  • tensorboard
  • 5.4.0 <= gcc <= 7.4.0 (Recommended for proper use of adaptive discriminator augmentation module)

You can install the recommended environment as follows:

conda env create -f environment.yml -n studiogan

With docker, you can use:

docker pull mgkang/studiogan:0.1

Quick Start

  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPU 0
CUDA_VISIBLE_DEVICES=0 python3 src/main.py -t -e -c CONFIG_PATH
  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPUs (0, 1, 2, 3) and DataParallel
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -c CONFIG_PATH

Try python3 src/main.py to see available options.

Dataset

  • CIFAR10: StudioGAN will automatically download the dataset once you execute main.py.

  • Tiny Imagenet, Imagenet, or a custom dataset:

    1. download Tiny Imagenet and Imagenet. Prepare your own dataset.
    2. make the folder structure of the dataset as follows:
┌── docs
├── src
└── data
    └── ILSVRC2012 or TINY_ILSVRC2012 or CUSTOM
        ├── train
        │   ├── cls0
        │   │   ├── train0.png
        │   │   ├── train1.png
        │   │   └── ...
        │   ├── cls1
        │   └── ...
        └── valid
            ├── cls0
            │   ├── valid0.png
            │   ├── valid1.png
            │   └── ...
            ├── cls1
            └── ...

Examples and Results

The src/configs directory contains config files used in our experiments.

CIFAR10 (3x32x32)

To train and evaluate ECGAN-UC on CIFAR10:

python3 src/main.py -t -e -c src/configs/CIFAR10/ecgan_v2_none_0_0p01.json
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN-Mod StudioGAN 9.746 8.034 0.995 0.994 - - -
ContraGAN StudioGAN 9.729 8.065 0.993 0.992 - - -
Ours - 10.078 7.936 0.990 0.988 Cfg Log Link

Tiny ImageNet (3x64x64)

To train and evaluate ECGAN-UC on Tiny ImageNet:

python3 src/main.py -t -e -c src/configs/TINY_ILSVRC2012/ecgan_v2_none_0_0p01.json --eval_type valid
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN-Mod StudioGAN 11.998 31.92 0.956 0.879 - - -
ContraGAN StudioGAN 13.494 27.027 0.975 0.902 - - -
Ours - 18.445 18.319 0.977 0.973 Cfg Log Link

ImageNet (3x128x128)

To train and evaluate ECGAN-UCE on ImageNet (~12 days on 8 NVIDIA V100 GPUs):

python3 src/main.py -t -e -l -sync_bn -c src/configs/ILSVRC2012/imagenet_ecgan_v2_contra_1_0p05.json --eval_type valid
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN StudioGAN 28.633 24.684 0.941 0.921 - - -
ContraGAN StudioGAN 25.249 25.161 0.947 0.855 - - -
Ours - 80.685 8.491 0.984 0.985 Cfg Log Link

Generated Images

Here are some selected images generated by ECGAN.

Owner
sianchen
Ph.D. student in Computer Science at National Taiwan University
sianchen
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022