A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

Overview

ML Lineage Helper

This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts include data, code, feature groups, features in a feature group, feature group queries, training jobs, and models.

Install

pip install git+https://github.com/aws-samples/ml-lineage-helper

Usage

Import ml_lineage_helper.

from ml_lineage_helper import *
from ml_lineage_helper.query_lineage import QueryLineage

Creating and Displaying ML Lineage

Lineage tracking can tie together a SageMaker Processing job, the raw data being processed, the processing code, the query you used against the Feature Store to fetch your training and test sets, the training and test data in S3, and the training code into a lineage represented as a DAG.

ml_lineage = MLLineageHelper()
lineage = ml_lineage.create_ml_lineage(estimator_or_training_job_name, model_name=model_name,
                                       query=query, sagemaker_processing_job_description=preprocessing_job_description,
                                       feature_group_names=['customers', 'claims'])
lineage

If you cloned your code from a version control hosting platform like GitHub or GitLab, ml_lineage_tracking can associate the URLs of the code with the artifacts that will be created. See below:

# Get repo links to processing and training code
processing_code_repo_url = get_repo_link(os.getcwd(), 'processing.py')
training_code_repo_url = get_repo_link(os.getcwd(), 'pytorch-model/train_deploy.py', processing_code=False)
repo_links = [processing_code_repo_url, training_code_repo_url]

# Create lineage
ml_lineage = MLLineageHelper()
lineage = ml_lineage.create_ml_lineage(estimator, model_name=model_name,
                                       query=query, sagemaker_processing_job_description=preprocessing_job_description,
                                       feature_group_names=['customers', 'claims'],
                                       repo_links=repo_links)
lineage
Name/Source Association Name/Destination Artifact Source ARN Artifact Destination ARN Source URI Base64 Feature Store Query String Git URL
pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job Produced Model arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/013fa1be4ec1d192dac21abaf94ddded None None None
TrainingCode ContributedTo pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/902d23ff64ef6d85dc27d841a967cd7d arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job s3://sagemaker-us-west-2-000000000000/pytorch-hosted-model-2021-08-26-15-55-22-071/source/sourcedir.tar.gz None https://gitlab.com/bwlind/ml-lineage-tracking/blob/main/ml-lineage-tracking/pytorch-model/train_deploy.py
TestingData ContributedTo pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/1ae9dfab7a3817cbf14708d932d9142d arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job s3://sagemaker-us-west-2-000000000000/ml-lineage-tracking-v1/test.npy None None
TrainingData ContributedTo pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/a0fd47c730f883b8e5228577fc5d5ef4 arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job s3://sagemaker-us-west-2-000000000000/ml-lineage-tracking-v1/train.npy CnNlbGVjdCAqCmZyb20gImJvc3Rvbi1ob3VzaW5nLXY1LTE2Mjk3MzEyNjkiCg== None
fg-boston-housing-v5 ContributedTo TestingData arn:aws:sagemaker:us-west-2:000000000000:artifact/1969cb21bf48405e0f2bb2d33f48b7b2 arn:aws:sagemaker:us-west-2:000000000000:artifact/1ae9dfab7a3817cbf14708d932d9142d arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing-v5 None None
fg-boston-housing ContributedTo TestingData arn:aws:sagemaker:us-west-2:000000000000:artifact/d1b82165341cd78b93995d492b5adf7f arn:aws:sagemaker:us-west-2:000000000000:artifact/1ae9dfab7a3817cbf14708d932d9142d arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing None None
ProcessingJob ContributedTo fg-boston-housing-v5 arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f arn:aws:sagemaker:us-west-2:000000000000:artifact/1969cb21bf48405e0f2bb2d33f48b7b2 arn:aws:sagemaker:us-west-2:000000000000:processing-job/pytorch-workflow-preprocessing-26-15-41-18 None None
ProcessingInputData ContributedTo ProcessingJob arn:aws:sagemaker:us-west-2:000000000000:artifact/2204290e557c4c9feaaa4ef7e4d88f0c arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f s3://sagemaker-us-west-2-000000000000/ml-lineage-tracking-v1/data/raw None None
ProcessingCode ContributedTo ProcessingJob arn:aws:sagemaker:us-west-2:000000000000:artifact/69de4723ab0643c6ca8257bc6fbcfb4f arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f s3://sagemaker-us-west-2-000000000000/pytorch-workflow-preprocessing-26-15-41-18/input/code/preprocessing.py None https://gitlab.com/bwlind/ml-lineage-tracking/blob/main/ml-lineage-tracking/processing.py
ProcessingJob ContributedTo fg-boston-housing arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f arn:aws:sagemaker:us-west-2:000000000000:artifact/d1b82165341cd78b93995d492b5adf7f arn:aws:sagemaker:us-west-2:000000000000:processing-job/pytorch-workflow-preprocessing-26-15-41-18 None None
fg-boston-housing-v5 ContributedTo TrainingData arn:aws:sagemaker:us-west-2:000000000000:artifact/1969cb21bf48405e0f2bb2d33f48b7b2 arn:aws:sagemaker:us-west-2:000000000000:artifact/a0fd47c730f883b8e5228577fc5d5ef4 arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing-v5 None None
fg-boston-housing ContributedTo TrainingData arn:aws:sagemaker:us-west-2:000000000000:artifact/d1b82165341cd78b93995d492b5adf7f arn:aws:sagemaker:us-west-2:000000000000:artifact/a0fd47c730f883b8e5228577fc5d5ef4 arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing None None

You can optionally see the lineage represented as a graph instead of a Pandas DataFrame:

ml_lineage.graph()

If you're jumping in a notebook fresh and already have a model whose ML Lineage has been tracked, you can get this MLLineage object by using the following line of code:

ml_lineage = MLLineageHelper(sagemaker_model_name_or_model_s3_uri='my-sagemaker-model-name')
ml_lineage.df

Querying ML Lineage

If you have a data source, you can find associated Feature Groups by providing the data source's S3 URI or Artifact ARN:

query_lineage = QueryLineage()
query_lineage.get_feature_groups_from_data_source(artifact_arn_or_s3_uri)

You can also start with a Feature Group, and find associated data sources:

query_lineage = QueryLineage()
query_lineage.get_data_sources_from_feature_group(artifact_or_fg_arn, max_depth=3)

Given a Feature Group, you can also find associated models:

query_lineage = QueryLineage()
query_lineage.get_models_from_feature_group(artifact_or_fg_arn)

Given a SageMaker model name or artifact ARN, you can find associated Feature Groups.

query_lineage = QueryLineage()
query_lineage.get_feature_groups_from_model(artifact_arn_or_model_name)

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
AWS Samples
AWS Samples
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021