DCA - Official Python implementation of Delaunay Component Analysis algorithm

Related tags

Deep LearningDCA
Overview

Delaunay Component Analysis (DCA)

Official Python implementation of the Delaunay Component Analysis (DCA) algorithm presented in the paper Delaunay Component Analysis for Evaluation of Data Representations. If you use this code in your work, please cite it as follows:

Citation

@inproceedings{
    poklukar2022delaunay,
    title={Delaunay Component Analysis for Evaluation of Data Representations},
    author={Petra Poklukar and Vladislav Polianskii and Anastasiia Varava and Florian T. Pokorny and Danica Kragic Jensfelt},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=HTVch9AMPa}
}

Getting started

Setup

Install the requirements with poetry:

poetry install
chmod +x dca/approximate_Delaunay_graph

Note: Delaunay graph building algorithm requires access to a GPU.

First example

  1. Run a 2D example that saves the intermediate files:
poetry run python examples/first_example.py 
  1. Check out the results saved output/first_example which will have the following structure:
experiments/first_example/
  /precomputed
    - clusterer.pkl               # HDBSCAN clusterer object
    - input_array.npy             # array of R and E points
    - input_array_comp_labels.npy # array of component labels corresponding to R and E points
    - unfiltered_edges.npy        # array of unfiltered approximated Delaunay edges
    - unfiltered_edges_len.npy    # array of unfiltered approximated Delaunay edge lengths
  /template_id1
    - output.json                 # dca scores 
    /DCA
        - components_stats.pkl    # Local evaluation scores
        - network_stats.pkl       # Global evaluation scores
    /visualization
        - graph visualizations
    /logs
        - version0_elapsed_time.log      # empirical runtime 
        - version0_input.json            # specific input parameters
        - version0_output_formatted.log  # all evaluation scores in a pretty format
        - version0_experiment_info.log   # console logs
        - # output files from qDCA
        - # any additional logs that should not be shared across experiment_ids in precomputed folder

Note: you can modify the experiment structure by definining what is shared across several experiments, e.g., what goes in the output/first_example/precomputed folder. For examples, see CL_ablation_study.py.

  1. In output/first_example/template_id1/visualization folder you should see an image of the approximated Delaunay graph and the distilled Delaunay graph like the ones below:

first_example

  1. In output/first_example/template_id1/logs/version0_output_formatted.log you should see the following output:
[mm/dd/yyyy hh:mm:ss] :: num_R: 20                            # total number of R points
[mm/dd/yyyy hh:mm:ss] :: num_E: 20                            # total number of E points
[mm/dd/yyyy hh:mm:ss] :: precision: 0.95                      
[mm/dd/yyyy hh:mm:ss] :: recall: 0.4
[mm/dd/yyyy hh:mm:ss] :: network_consistency: 1.0
[mm/dd/yyyy hh:mm:ss] :: network_quality: 0.2
[mm/dd/yyyy hh:mm:ss] :: first_trivial_component_idx: 2       # idx of the first outlier
[mm/dd/yyyy hh:mm:ss] :: num_R_points_in_fundcomp: 8          # number of vertices in F^R
[mm/dd/yyyy hh:mm:ss] :: num_E_points_in_fundcomp: 19         # number of vertices in F^E
[mm/dd/yyyy hh:mm:ss] :: num_RE_edges: 19                     # number of heterogeneous edges in G_DD
[mm/dd/yyyy hh:mm:ss] :: num_total_edges: 95                  # number of all edges in G_DD
[mm/dd/yyyy hh:mm:ss] :: num_R_outliers: 0                    
[mm/dd/yyyy hh:mm:ss] :: num_E_outliers: 1
[mm/dd/yyyy hh:mm:ss] :: num_fundcomp: 1                      # number of fundamental components |F|
[mm/dd/yyyy hh:mm:ss] :: num_comp: 3                          # number of all connected components
[mm/dd/yyyy hh:mm:ss] :: num_outliercomp: 1                   # number of trivial components
# Local scores for each component G_i: consistency and quality (Def 3.2) as well as number of R and E points contained in it
[mm/dd/yyyy hh:mm:ss] :: c(G0): 0.59, q(G0): 0.27, |G0^R|_v: 8   , |G0^E|_v: 19  , |G0|_v: 27  
[mm/dd/yyyy hh:mm:ss] :: c(G1): 0.00, q(G1): 0.00, |G1^R|_v: 12  , |G1^E|_v: 0   , |G1|_v: 12  
[mm/dd/yyyy hh:mm:ss] :: c(G2): 0.00, q(G2): 0.00, |G2^R|_v: 0   , |G2^E|_v: 1   , |G2|_v: 1   
  1. If you are only interested in the output DCA scores, the cleanup function will remove all of the intermediate files for you. Test it on this 2D example by running
poetry run python examples/first_example.py --cleanup 1

Note: to run q-DCA it is required to keep the intermediate files. This is because the distilled Delaunay graph is needed to calculate edges to the query points.

Run DCA on your own representations

Minimum example requires you to define the input parameters as in the code below. See dca/schemes.py for the optional arguments of the input configs.

# Generate input parameters
data_config = REData(R=R, E=E)
experiment_config = ExperimentDirs(
    experiment_dir=experiment_path,
    experiment_id=experiment_id,
)
graph_config = DelaunayGraphParams()
hdbscan_config = HDBSCANParams()
geomCA_config = GeomCAParams()

# Initialize loggers
exp_loggers = DCALoggers(experiment_config.logs_dir)

# Run DCA
dca = DCA(
    experiment_config,
    graph_config,
    hdbscan_config,
    geomCA_config,
    loggers=exp_loggers,
)
dca_scores = dca.fit(data_config)
dca.cleanup()  # Optional cleanup

Reproduce experiments in the paper

Datasets

We used and adjusted datasets used in our eariler work GeomCA. Therefore, we only provide the representations used in the contrastive learning experiment and q-DCA stylegan experiment, which you can download on this link and save them in representations/contrastive_learning and representations/stylegan folders, respectively. For VGG16, we provide the code (see VGG16_utils.py) we used on the splits constructed in GeomCA. For StyleGAN mode truncation experiment, we refer the user either to the splits we provided in GeomCA or to the code provided by Kynkäänniemi et. al.

Section 4.1: Contrastive Learning

Reproduce Varying component density experiment:

poetry run python experiments/contrastive_learning/CL_varying_component_density.py --n-iterations 10 --perc-to-discard 0.5 --cleanup 1

Reproduce Cluster assignment experiment, for example, using query set Q2 and considering flexible assignment procedure:

poetry run python experiments/contrastive_learning/CL_qDCA.py Df query_Df_holdout_c7_to_c11 --run-dca 1 --run-qdca 1 --several-assignments 1 --cleanup 1

Reproduce Mode truncation experiment in Appendix B.1:

poetry run python experiments/contrastive_learning/CL_mode_truncation.py --cleanup 1

Reproduce Ablation study experiments in Appendix B.1:

poetry run python experiments/contrastive_learning/CL_ablation_study.py cl-ablation-delaunay-edge-approximation --cleanup 1
poetry run python experiments/contrastive_learning/CL_ablation_study.py cl-ablation-delaunay-edge-filtering --cleanup 1
poetry run python experiments/contrastive_learning/CL_ablation_study.py cl-ablation-hdbscan --cleanup 1

Section 4.2: StyleGAN

Reproduce Mode truncation experiment, for example, on truncation 0.5 and 5000 representations provided by Poklukar et. al in GeomCA:

poetry run python experiments/stylegan/StyleGAN_mode_truncation.py 0.5 --num-samples "5000" --cleanup 1

Reproduce Quality of individual generated images experiment using qDCA, for example, on truncation 0.5 --cleanup 1

poetry run python experiments/stylegan/StyleGAN_qDCA.py --run-dca 1 --run-qdca 1 --cleanup 1

Section 4.3: VGG16

Reproduce Class separability experiment, for example, on version 1 containing classes of dogs and kitchen utils

poetry run python experiments/vgg16/VGG16_class_separability.py --version-id 1 --cleanup 1 

Reproduce Amending labelling inconsistencies experiment using qDCA, for example, on version 1 containing classes of dogs and kitchen utils

poetry run python experiments/vgg16/VGG16_qDCA.py --version-id 1 --run-dca 1 --run-qdca 1 --cleanup 1
Owner
Petra Poklukar
Petra Poklukar
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022