Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Related tags

Deep Learningpynomial
Overview

Pynomial

Pynomial (pronounced like "binomial") is a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model. Pynomial is more or less a python port of the R library {binom} by Sundar Dorai-Raj. As a point of philosophy and until otherwise stated, if {binom} does a thing then so should pynomial (e.g. error throwing or handling cases when the number of successes is the same as the number of trials).

Tests

Features

The following confidence intervals are implemented:

  • The Agresti Coull Interval

  • The asymptotic interval based on the central limit theorem (this is the interval you probably see in most statistics textbooks)

  • An equal tailed posterior credible interval using a conjugate Beta prior

  • The complimentary log-log interval

  • The Wilson score interval

  • The exact interval based on the incomplete beta function.

  • The logit based confidence interval with large sample theory variance.

Installation

You can install pynomial from github using

 pip install git+https://github.com/Dpananos/pynomial

Getting Started

Usage

Using pynomial is very straight forward. Each interval function has three common arguments: x -- the number of success, n -- the number of trials, and conf -- the desired confidence level. Both x and n can be either integers or arrays of integers and conf must be a float between 0 and 1 (the default is 0.95 for a 95% confidence interval). After calling an interval function with the propper arguments, a dataframe will be returned yeilding an estimate of the risk as well as the lower and upper confidence limits. As an example, suppose I flipped a coin 20 times and observed 12 heads. Using the wilson function to compute a Wilson score confidence interval, the output would be

from pynomial import wilson
x = 12
n = 20
wilson(x=x, n=n)
        estimate     lower     upper
Wilson       0.6  0.386582  0.781193

Each interval function is vectorized, so we can compute confidence intervals for many experiments at once.

from pynomial import wilson
x = np.array([11, 12, 13])
n = 20
wilson(x=x, n=n)
        estimate     lower     upper
Wilson      0.55  0.342085  0.741802
Wilson      0.60  0.386582  0.781193
Wilson      0.65  0.432854  0.818808

The output of each interval function is a pandas dataframe, making plotting the confidence intervals straightforward.

Information on Binomial Random Variables

Many textbooks have their own treatment of binomial random variables and confidence intervals. Recommended resources to familliarize one's self with the methods in this library are:

  • Lachin, John M. Biostatistical methods: the assessment of relative risks. Vol. 509. John Wiley & Sons, 2009.

  • Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta. Interval estimation for a binomial proportion. Statistical science 16.2 (2001): 101-133.

  • Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta. Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics 30.1 (2002): 160-201.

Owner
Demetri Pananos
Statistician/Mathematician/Scientist/Former PyMC3 GSoC Student
Demetri Pananos
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022