Compact Bilinear Pooling for PyTorch

Overview

Compact Bilinear Pooling for PyTorch.

This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

This version relies on the FFT implementation provided with PyTorch 0.4.0 onward. For older versions of PyTorch, use the tag v0.3.0.

Installation

Run the setup.py, for instance:

python setup.py install

Usage

class compact_bilinear_pooling.CompactBilinearPooling(input1_size, input2_size, output_size, h1 = None, s1 = None, h2 = None, s2 = None)

Basic usage:

from compact_bilinear_pooling import CountSketch, CompactBilinearPooling

input_size = 2048
output_size = 16000
mcb = CompactBilinearPooling(input_size, input_size, output_size).cuda()
x = torch.rand(4,input_size).cuda()
y = torch.rand(4,input_size).cuda()

z = mcb(x,y)

Test

A couple of test of the implementation of Compact Bilinear Pooling and its gradient can be run using:

python test.py

References

Comments
  • The value in ComplexMultiply_backward function

    The value in ComplexMultiply_backward function

    Hi @gdlg, thanks for this nice work. I'm confused about the backward procedure of complex multiplication. So I hope you can help me to figure it out.

    In forward,

    Z = XY = (Rx + i * Ix)(Ry + i * Iy) = (RxRy - IxIy) + i * (IxRy + RxIy) = Rz + i * Iz
    

    In backward, according the chain rule, it will has

    grad_(L/X) = grad_(L/Z) * grad(Z/X)
               = grad_Z * Y
               = (R_gz + i * I_gz)(Ry + i * Iy)
               = (R_gzRy - I_gzIy) + i * (I_gzRy + R_gzIy)
    

    So, why is this line implemented by using the value = 1 for real part and value = -1 for image part?

    Is there something wrong in my thoughts? Thanks.

    opened by KaiyuYue 8
  • The miss of Rfft

    The miss of Rfft

    When I run the test module, it indicates that the module of pytorch_fft of fft in autograd does not have attribute of Rfft. What version of pytorch_fft should I install to fit this code?

    opened by PeiqinZhuang 8
  • Save the model - TypeError: can't pickle Rfft objects

    Save the model - TypeError: can't pickle Rfft objects

    How do you save and load the model, I'm using torch.save, which cause the following error:

    File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in save
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 117, in _with_file_like
       return body(f)
     File "xanaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in <lambda>
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 198, in _save
       pickler.dump(obj)
    TypeError: can't pickle Rfft objects
    
    
    opened by idansc 3
  • Multi GPU support

    Multi GPU support

    I modify

    class CompactBilinearPooling(nn.Module):   
         def forward(self, x, y):    
                return CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)
    

    to

    def forward(self, x):    
        x = x.permute(0, 2, 3, 1) #NCHW to NHWC   
        y = Variable(x.data.clone())    
        out = (CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)).permute(0,3,1,2) #to NCHW    
        out = nn.functional.adaptive_avg_pool2d(out, 1) # N,C,1,1   
        #add an element-wise signed square root layer and an instance-wise l2 normalization    
        out = (torch.sqrt(nn.functional.relu(out)) - torch.sqrt(nn.functional.relu(-out)))/torch.norm(out,2,1,True)   
        return out 
    

    This makes the compact pooling layer can be plugged to PyTorch CNNs more easily:

    model.avgpool = CompactBilinearPooling(input_C, input_C, bilinear['dim'])
    model.fc = nn.Linear(int(model.fc.in_features/input_C*bilinear['dim']), num_classes)

    However, when I run this using multiple GPUs, I got the following error:

    Traceback (most recent call last): File "train3_bilinear_pooling.py", line 400, in run() File "train3_bilinear_pooling.py", line 219, in run train(train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 326, in train return _each_epoch('train', train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 270, in _each_epoch output = model(input_var) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 319, in call result = self.forward(*input, **kwargs) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 67, in forward replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 72, in replicate return replicate(module, device_ids) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 19, in replicate buffer_copies = comm.broadcast_coalesced(buffers, devices) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/cuda/comm.py", line 55, in broadcast_coalesced for chunk in _take_tensors(tensors, buffer_size): File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/_utils.py", line 232, in _take_tensors if tensor.is_sparse: File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/autograd/variable.py", line 68, in getattr return object.getattribute(self, name) AttributeError: 'Variable' object has no attribute 'is_sparse'

    Do you have any ideas?

    opened by YanWang2014 3
  • AssertionError: False is not true

    AssertionError: False is not true

    Hi, I am back again. When running the test.py, I got the following error File "test.py", line 69, in test_gradients self.assertTrue(torch.autograd.gradcheck(cbp, (x,y), eps=1)) AssertionError: False is not true

    What does this mean?

    opened by YanWang2014 2
  • Support for Pytorch 1.11?

    Support for Pytorch 1.11?

    Hi, torch.fft() and torch.irfft() are no more functions, those are modules. And there appears to be a lof of modification in the parameters. I am currently trying to combine the two types of features with compact bilinear pooling, do you know how to port this code to pytorch 1.11?

    opened by bhosalems 1
  • Training does not converge after joining compact bilinear layer

    Training does not converge after joining compact bilinear layer

    Source code: x = self.features(x) #[4,512,28,28] batch_size = x.size(0) x = (torch.bmm(x, torch.transpose(x, 1, 2)) / 28 ** 2).view(batch_size, -1) x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x my code: x = self.features(x) #[4,512,28,28] x = x.view(x.shape[0], x.shape[1], -1) #[4,512,784] x = x.permute(0, 2, 1) #[4,784,512] x = self.mcb(x,x) #[4,784,512] batch_size = x.size(0) x = x.sum(1) #对于二维来说,dim=0,对列求和;dim=1对行求和;在这里是三维所以是对列求和 x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x

    The training does not converge after modification. Why? Is it a problem with my code?

    opened by roseif 3
Releases(v0.4.0)
Owner
Grégoire Payen de La Garanderie
Grégoire Payen de La Garanderie
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022