TinyML Cookbook, published by Packt

Overview

TinyML Cookbook

TinyML Cookbook

This is the code repository for TinyML Cookbook, published by Packt.

Author: Gian Marco Iodice
Publisher: Packt

About the book

This book is about TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget, we can give life to objects that interact with the world around us smartly and transform the way we live for the better. However, this field can be hard to approach if we come from an ML background with a little familiarity with embedded systems such as microcontrollers. Therefore, this book wants to dispel these barriers and make TinyML also accessible to developers with no embedded programming experience through practical examples. Each chapter will be a self-contained project to learn how to use some of the technologies at the heart of TinyML, interface with electronic components like sensors, and deploy ML models on memory-constrained devices.

Who is this book for

This book is for ML developers/engineers interested in developing machine learning applications on microcontrollers through practical examples quickly. The book will help you expand your knowledge towards the revolution of tiny machine learning (TinyML) by building end-to-end smart projects with real-world data sensors on Arduino Nano 33 BLE Sense and Raspberry Pi Pico.

Basic familiarity with C/C++, Python programming, and a command-line interface (CLI) is required. However, no prior knowledge of microcontrollers is necessary.

Technical requirements

You will need a computer (either a laptop or desktop) with an x86-64 architecture and at least one USB port for programming Arduino Nano 33 BLE Sense and Raspberry Pi Pico microcontroller boards. For the first six chapters, you can use Ubuntu 18.04 (or later) or Windows (for example, Windows 10) as an operating system (OS). However, you will need Ubuntu 18.04 (or later) for chapter 7 and chapter 8.

The only software prerequisites for your computer are:

  • Python (Python 3.7 recommended)
  • Text editor (for example, gedit on Ubuntu)
  • Media player (for example, VLC)
  • Image viewer (for example, the default app in Ubuntu or Windows 10)
  • Web browser (for example, Google Chrome)

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be developed directly in the web browser with the Arduino Web Editor. However, you may also consider using the local Arduino IDE following the instructions provided at this link.

The following table summarizes the hardware devices and software tools covered in each chapter:

Chapter Devices SW tools Electronic components
1 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor None
2 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor - A micro-USB cable
- 1x half-size breadboard
- 1x red LED
- 1x 220 Ohm resistor
- 1x 3 AA battery holder
- 1x 4 AA battery holder
- 4x AA batteries
- 5x jumper wires
3 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Google Colaboratory
- A micro-USB cable
- 1x half-size breadboard
- 1x AM2302 module with the DHT22 sensor
- 5x jumper wires
4 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x electrect microphone amplifier - MAX9814
- 2x 220 Ohm resistor
- 1x 100 Ohm resistor
- 1x red LED
- 1x green LED
- 1x blue LED
- 1x push-button
- 11x jumper wires
5 - Arduino Nano 33 BLE Sense - Arduino Web Editor
- Google Colaboratory
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x OV7670 camera module
- 1x push-button
- 18 jumper wires
6 - Raspberry Pi Pico - Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x MPU-6050 IMU
- 4x jumper wires
7 - Arm Cortex-M3 Virtual Platform (QEMU) - Google Colaboratory
- Python
- Zephyr project
None
8 - Virtual Arm Ethos-U55 microNPU - Arm Corstone-300 FVP
- Python
- TVM
None

Citation

To cite TinyML Cookbook in publications use:

@book{iodice2022tinymlcookbook,
  title={TinyML Cookbook: Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter},
  author={Gian Marco Iodice},
  year={2022},
  publisher={Packt},
  isbn = {9781801814973},
  url = {https://www.packtpub.com/product/tinyml-cookbook/9781801814973}
}

About the author

Gian Marco Iodice is team and tech lead in the Machine Learning Group at Arm, who co-created the Arm Compute Library in 2017. Arm Compute Library is currently the most performant library for ML on Arm, and it’s deployed on billions of devices worldwide – from servers to smartphones.

Gian Marco holds an MSc degree, with honors, in electronic engineering from the University of Pisa (Italy) and has several years of experience developing ML and computer vision algorithms on edge devices. Now, he's leading the ML performance optimization on Arm Mali GPUs.

In 2020, Gian Marco co-founded the TinyML UK meetup group to encourage knowledge sharing, educate, and inspire the next generation of ML developers on tiny and power-efficient devices.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022