PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

Overview

1-bit Wide ResNet

PyTorch implementation of training 1-bit Wide ResNets from this paper:

Training wide residual networks for deployment using a single bit for each weight by Mark D. McDonnell at ICLR 2018

https://openreview.net/forum?id=rytNfI1AZ

https://arxiv.org/abs/1802.08530

The idea is very simple but surprisingly effective for training ResNets with binary weights. Here is the proposed weight parameterization as PyTorch autograd function:

class ForwardSign(torch.autograd.Function):
    @staticmethod
    def forward(ctx, w):
        return math.sqrt(2. / (w.shape[1] * w.shape[2] * w.shape[3])) * w.sign()

    @staticmethod
    def backward(ctx, g):
        return g

On forward, we take sign of the weights and scale it by He-init constant. On backward, we propagate gradient without changes. WRN-20-10 trained with such parameterization is only slightly off from it's full precision variant, here is what I got myself with this code on CIFAR-100:

network accuracy (5 runs mean +- std) checkpoint (Mb)
WRN-20-10 80.5 +- 0.24 205 Mb
WRN-20-10-1bit 80.0 +- 0.26 3.5 Mb

Details

Here are the differences with WRN code https://github.com/szagoruyko/wide-residual-networks:

  • BatchNorm has no affine weight and bias parameters
  • First layer has 16 * width channels
  • Last fc layer is removed in favor of 1x1 conv + F.avg_pool2d
  • Downsample is done by F.avg_pool2d + torch.cat instead of strided conv
  • SGD with cosine annealing and warm restarts

I used PyTorch 0.4.1 and Python 3.6 to run the code.

Reproduce WRN-20-10 with 1-bit training on CIFAR-100:

python main.py --binarize --save ./logs/WRN-20-10-1bit_$RANDOM --width 10 --dataset CIFAR100

Convergence plot (train error in dash):

download

I've also put 3.5 Mb checkpoint with binary weights packed with np.packbits, and a very short script to evaluate it:

python evaluate_packed.py --checkpoint wrn20-10-1bit-packed.pth.tar --width 10 --dataset CIFAR100

S3 url to checkpoint: https://s3.amazonaws.com/modelzoo-networks/wrn20-10-1bit-packed.pth.tar

Owner
Sergey Zagoruyko
Sergey Zagoruyko
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022