PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

Overview

pytorch-deep-generative-replay

PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017

model

Results

Continual Learning on Permutated MNISTs

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

Continual Learning on MNIST-SVHN

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without any replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Continual Learning on SVHN-MNIST

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Installation

$ git clone https://github.com/kuc2477/pytorch-deep-generative-replay
$ pip install -r pytorch-deep-generative-replay/requirements.txt

Commands

Usage

$ ./main.py --help
$ usage: PyTorch implementation of Deep Generative Replay [-h]
                                                          [--experiment {permutated-mnist,svhn-mnist,mnist-svhn}]
                                                          [--mnist-permutation-number MNIST_PERMUTATION_NUMBER]
                                                          [--mnist-permutation-seed MNIST_PERMUTATION_SEED]
                                                          --replay-mode
                                                          {exact-replay,generative-replay,none}
                                                          [--generator-z-size GENERATOR_Z_SIZE]
                                                          [--generator-c-channel-size GENERATOR_C_CHANNEL_SIZE]
                                                          [--generator-g-channel-size GENERATOR_G_CHANNEL_SIZE]
                                                          [--solver-depth SOLVER_DEPTH]
                                                          [--solver-reducing-layers SOLVER_REDUCING_LAYERS]
                                                          [--solver-channel-size SOLVER_CHANNEL_SIZE]
                                                          [--generator-c-updates-per-g-update GENERATOR_C_UPDATES_PER_G_UPDATE]
                                                          [--generator-iterations GENERATOR_ITERATIONS]
                                                          [--solver-iterations SOLVER_ITERATIONS]
                                                          [--importance-of-new-task IMPORTANCE_OF_NEW_TASK]
                                                          [--lr LR]
                                                          [--weight-decay WEIGHT_DECAY]
                                                          [--batch-size BATCH_SIZE]
                                                          [--test-size TEST_SIZE]
                                                          [--sample-size SAMPLE_SIZE]
                                                          [--image-log-interval IMAGE_LOG_INTERVAL]
                                                          [--eval-log-interval EVAL_LOG_INTERVAL]
                                                          [--loss-log-interval LOSS_LOG_INTERVAL]
                                                          [--checkpoint-dir CHECKPOINT_DIR]
                                                          [--sample-dir SAMPLE_DIR]
                                                          [--no-gpus]
                                                          (--train | --test)

To Run Full Experiments

# Run a visdom server and conduct full experiments
$ python -m visdom.server &
$ ./run_full_experiments

To Run a Single Experiment

# Run a visdom server and conduct a desired experiment
$ python -m visdom.server &
$ ./main.py --train --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

To Generate Images from the learned Scholar

$ # Run the command below and visit the "samples" directory
$ ./main.py --test --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

Note

  • I failed to find the supplementary materials that the authors mentioned in the paper to contain the experimental details. Thus, I arbitrarily chose a 4-convolutional-layer CNN as a solver in this project. If you know where I can find the additional materials, please let me know through the project's Github issue.

Reference

Author

Ha Junsoo / @kuc2477 / MIT License

Owner
Junsoo Ha
A graduate student @SNUVL
Junsoo Ha
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023