I tried to apply the CAM algorithm to YOLOv4 and it worked.

Overview

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现


2021年2月7日更新:
加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。

目录

  1. 性能情况 Performance
  2. 实现的内容 Achievement
  3. 所需环境 Environment
  4. 注意事项 Attention
  5. 小技巧的设置 TricksSet
  6. 文件下载 Download
  7. 预测步骤 How2predict
  8. 训练步骤 How2train
  9. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
VOC07+12+COCO yolo4_voc_weights.pth VOC-Test07 416x416 - 89.0
COCO-Train2017 yolo4_weights.pth COCO-Val2017 416x416 46.1 70.2

实现的内容

  • 主干特征提取网络:DarkNet53 => CSPDarkNet53
  • 特征金字塔:SPP,PAN
  • 训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减
  • 激活函数:使用Mish激活函数
  • ……balabla

所需环境

torch==1.2.0

注意事项

代码中的yolo4_weights.pth是基于608x608的图片训练的,但是由于显存原因。我将代码中的图片大小修改成了416x416。有需要的可以修改回来。 代码中的默认anchors是基于608x608的图片的。
注意不要使用中文标签,文件夹中不要有空格!
在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件

小技巧的设置

在train.py文件下:
1、mosaic参数可用于控制是否实现Mosaic数据增强。
2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。
3、label_smoothing可用于控制是否Label Smoothing平滑。

文件下载

训练所需的yolo4_weights.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1WlDNPtGO1pwQbqwKx1gRZA 提取码: p4sc
yolo4_weights.pth是coco数据集的权重。
yolo4_voc_weights.pth是voc数据集的权重。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载yolo4_weights.pth或者yolo4_voc_weights.pth,放入model_data,运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    "model_path": 'model_data/yolo4_weights.pth',
    "anchors_path": 'model_data/yolo_anchors.txt',
    "classes_path": 'model_data/coco_classes.txt',
    "model_image_size" : (416, 416, 3),
    "confidence": 0.5,
    "cuda": True
}
  1. 运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

训练步骤

  1. 本文使用VOC格式进行训练。
  2. 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
  3. 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  4. 在训练前利用voc2yolo4.py文件生成对应的txt。
  5. 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  1. 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置
  2. 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'    

model_data/new_classes.txt文件内容为:

cat
dog
...
  1. 运行train.py即可开始训练。

mAP目标检测精度计算更新

更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw

Reference

https://github.com/qqwweee/keras-yolo3/
https://github.com/Cartucho/mAP
https://github.com/Ma-Dan/keras-yolo4

The above is original readme.md

My work

I tried to train the YOLOv4 to detect the helmet and it's color. In order to know whether it learned well, I visualized the output of the YOLO-Head.

origin.jpg detection.jpg
origin.jpg detection.jpg
head0 head1 head2
head0layer0score.jpg head1layer0score.jpg head2layer0score.jpg
head0layer1class.jpg head1layer1class.jpg head2layer1class.jpg
head0layer2class_score.jpg head1layer2class_score.jpg head2layer2class_score.jpg

The above are shown the visualization of the "yellow", we can easily see the hot area focus on the yellow helmets. So I think this can help us to train the model to a certain extent.

Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022