Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

Related tags

Deep LearningTR-BERT
Overview

TR-BERT

Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference".

model

The code is based on huggaface's transformers. Thanks to them! We will release all the source code in the future.

Requirement

Install dependencies and apex:

pip3 install -r requirement.txt
pip3 install --editable transformers

Pretrained models

Download the DistilBERT-3layer and BERT-1024 from Google Drive/Tsinghua Cloud.

Classfication

Download the IMDB, Yelp, 20News datasets from Google Drive/Tsinghua Cloud.

Download the Hyperpartisan dataset, and randomly split it into train/dev/test set: python3 split_hyperpartisan.py

Train BERT/DistilBERT Model

Use flag --do train:

python3 run_classification.py  --task_name imdb  --model_type bert  --model_name_or_path bert-base-uncased --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 16 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 5  --output_dir imdb_models/bert_base  --do_lower_case  --do_eval  --evaluate_during_training  --do_train

where task_name can be set as imdb/yelp_f/20news/hyperpartisan for different tasks and model type can be set as bert/distilbert for different models.

Compute Graident for Residual Strategy

Use flag --do_eval_grad.

python3 run_classification.py  --task_name imdb  --model_type bert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8  --output_dir imdb_models/bert_base  --do_lower_case  --do_eval_grad

This step doesn't supoort data DataParallel or DistributedDataParallel currently and should be done in a single GPU.

Train the policy network solely

Start from the checkpoint from the task-specific fine-tuned model. Change model_type from bert to autobert, and run with flag --do_train --train_rl:

python3 run_classification.py  --task_name imdb  --model_type autobert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 3  --output_dir imdb_models/auto_1  --do_lower_case  --do_train --train_rl --alpha 1 --guide_rate 0.5

where alpha is the harmonic coefficient for the length punishment and guide_rate is the proportion of imitation learning steps. model_type can be set as autobert/distilautobert for applying token reduction to BERT/DistilBERT.

Compute Logits for Knowledge Distilation

Use flag --do_eval_logits.

python3 run_classification.py  --task_name imdb  --model_type bert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8  --output_dir imdb_models/bert_base  --do_lower_case  --do_eval_logits

This step doesn't supoort data DataParallel or DistributedDataParallel currently and should be done in a single GPU.

Train the whole network with both the task-specifc objective and RL objective

Start from the checkpoint from --train_rl model and run with flag --do_train --train_both --train_teacher:

python3 run_classification.py  --task_name imdb  --model_type autobert  --model_name_or_path imdb_models/auto_1 --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 1 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 3  --output_dir imdb_models/auto_1_both  --do_lower_case  --do_train --train_both --train_teacher --alpha 1

Evaluate

Use flag --do_eval:

python3 run_classification.py  --task_name imdb  --model_type autobert  --model_name_or_path imdb_models/auto_1_both  --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 1  --output_dir imdb_models/auto_1_both  --do_lower_case  --do_eval --eval_all_checkpoints

When the batch size is more than 1 in evaluating, we will remain the same number of tokens for each instance in the same batch.

Initialize

For IMDB dataset, we find that when we directly initialize the selector with heuristic objective before train the policy network solely, we can get a bit better performance. For other datasets, this step makes little change. Run this step with flag --do_train --train_init:

python3 trans_imdb_rank.py
python3 run_classification.py  --task_name imdb  --model_type initbert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 3  --output_dir imdb_models/bert_init  --do_lower_case  --do_train --train_init 

Question Answering

Download the SQuAD 2.0 dataset.

Download the MRQA dataset with our split] from Google Drive/Tsinghua Cloud.

Download the HotpotQA dataset from the Transformer-XH repository, where paragraphs are retrieved for each question according to TF-IDF, entity linking and hyperlink and re-ranked by BERT re-ranker.

Download the TriviaQA dataset, where paragraphs are re-rank by the linear passage re-ranker in DocQA.

Download the WikiHop dataset.

The whole training progress of question answer models is similiar to text classfication models, with flags --do_train, --do_train --train_rl, --do_train --train_both --train_teacher in turn. The codes of each dataset:

SQuAD: run_squad.py with flag version_2_with_negative

NewsQA / NaturalQA: run_mrqa.py

RACE: run_race_classify.py

HotpotQA: run_hotpotqa.py

TriviaQA: run_triviaqa.py

WikiHop: run_wikihop.py

Harmonic Coefficient Lambda

The example harmonic coefficients are shown as follows:

Dataset train_rl train_both
SQuAD 2.0 5 5
NewsQA 3 5
NaturalQA 2 2
RACE 0.5 0.1
YELP.F 2 0.5
20News 1 1
IMDB 1 1
HotpotQA 0.1 4
TriviaQA 0.5 1
Hyperparisan 0.01 0.01

Cite

If you use the code, please cite this paper:

@inproceedings{ye2021trbert,
  title={TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference},
  author={Deming Ye, Yankai Lin, Yufei Huang, Maosong Sun},
  booktitle={Proceedings of NAACL 2021},
  year={2021}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023