Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Overview

Receptive Field Block Net for Accurate and Fast Object Detection

By Songtao Liu, Di Huang, Yunhong Wang

Updatas (2021/07/23): YOLOX is here!, stronger YOLO with ONNX, TensorRT, ncnn, and OpenVino supported!!

Updates: we propose a new method to get 42.4 mAP at 45 FPS on COCO, code is available here

Introduction

Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the discriminability and robustness of features. We further assemble the RFB module to the top of SSD with a lightweight CNN model, constructing the RFB Net detector. You can use the code to train/evaluate the RFB Net for object detection. For more details, please refer to our ECCV paper.

   

VOC2007 Test

System mAP FPS (Titan X Maxwell)
Faster R-CNN (VGG16) 73.2 7
YOLOv2 (Darknet-19) 78.6 40
R-FCN (ResNet-101) 80.5 9
SSD300* (VGG16) 77.2 46
SSD512* (VGG16) 79.8 19
RFBNet300 (VGG16) 80.7 83
RFBNet512 (VGG16) 82.2 38

COCO

System test-dev mAP Time (Titan X Maxwell)
Faster R-CNN++ (ResNet-101) 34.9 3.36s
YOLOv2 (Darknet-19) 21.6 25ms
SSD300* (VGG16) 25.1 22ms
SSD512* (VGG16) 28.8 53ms
RetinaNet500 (ResNet-101-FPN) 34.4 90ms
RFBNet300 (VGG16) 30.3 15ms
RFBNet512 (VGG16) 33.8 30ms
RFBNet512-E (VGG16) 34.4 33ms

MobileNet

System COCO minival mAP #parameters
SSD MobileNet 19.3 6.8M
RFB MobileNet 20.7 7.4M

Citing RFB Net

Please cite our paper in your publications if it helps your research:

@InProceedings{Liu_2018_ECCV,
author = {Liu, Songtao and Huang, Di and Wang, andYunhong},
title = {Receptive Field Block Net for Accurate and Fast Object Detection},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}

Contents

  1. Installation
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Installation

  • Install PyTorch-0.4.0 by selecting your environment on the website and running the appropriate command.
  • Clone this repository. This repository is mainly based on ssd.pytorch and Chainer-ssd, a huge thank to them.
    • Note: We currently only support PyTorch-0.4.0 and Python 3+.
  • Compile the nms and coco tools:
./make.sh

Note: Check you GPU architecture support in utils/build.py, line 131. Default is:

'nvcc': ['-arch=sm_52',
  • Then download the dataset by following the instructions below and install opencv.
conda install opencv

Note: For training, we currently support VOC and COCO.

Datasets

To make things easy, we provide simple VOC and COCO dataset loader that inherits torch.utils.data.Dataset making it fully compatible with the torchvision.datasets API.

VOC Dataset

Download VOC2007 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh # <directory>
Download VOC2012 trainval
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2012.sh # <directory>

COCO Dataset

Install the MS COCO dataset at /path/to/coco from official website, default is ~/data/COCO. Following the instructions to prepare minival2014 and valminusminival2014 annotations. All label files (.json) should be under the COCO/annotations/ folder. It should have this basic structure

$COCO/
$COCO/cache/
$COCO/annotations/
$COCO/images/
$COCO/images/test2015/
$COCO/images/train2014/
$COCO/images/val2014/

UPDATE: The current COCO dataset has released new train2017 and val2017 sets which are just new splits of the same image sets.

Training

mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
  • To train RFBNet using the train script simply specify the parameters listed in train_RFB.py as a flag or manually change them.
python train_RFB.py -d VOC -v RFB_vgg -s 300 
  • Note:
    • -d: choose datasets, VOC or COCO.
    • -v: choose backbone version, RFB_VGG, RFB_E_VGG or RFB_mobile.
    • -s: image size, 300 or 512.
    • You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see train_RFB.py for options)
    • If you want to reproduce the results in the paper, the VOC model should be trained about 240 epoches while the COCO version need 130 epoches.

Evaluation

To evaluate a trained network:

python test_RFB.py -d VOC -v RFB_vgg -s 300 --trained_model /path/to/model/weights

By default, it will directly output the mAP results on VOC2007 test or COCO minival2014. For VOC2012 test and COCO test-dev results, you can manually change the datasets in the test_RFB.py file, then save the detection results and submitted to the server.

Models

Owner
Liu Songtao
我萧峰大好男儿~ Factos👍👀​
Liu Songtao
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023