Local-Global Stratified Transformer for Efficient Video Recognition

Overview

DualFormer

This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model is built on a popular video package called mmaction2. This repo also refers to the code templates provided by PVT, Twins and Swin. This repo is released under the Apache 2.0 license.

Introduction

DualFormer is a Transformer architecture that can effectively and efficiently perform space-time attention for video recognition. Specifically, our DualFormer stratifies the full space-time attention into dual cascaded levels, i.e., to first learn fine-grained local space-time interactions among nearby 3D tokens, followed by the capture of coarse-grained global dependencies between the query token and the coarse-grained global pyramid contexts. Experimental results show the superiority of DualFormer on five video benchmarks against existing methods. In particular, DualFormer sets new state-of-the-art 82.9%/85.2% top-1 accuracy on Kinetics-400/600 with ∼1000G inference FLOPs which is at least 3.2× fewer than existing methods with similar performances.

Installation & Requirement

Please refer to install.md for installation. The docker files are also provided for convenient usage - cuda10.1 and cuda11.0.

All models are trained on 8 Nvidia A100 GPUs. For example, training a DualFormer-T on Kinetics-400 takes ∼31 hours on 8 A100 GPUs, while training a larger model DualFormer-B on Kinetics-400 requires ∼3 days on 8 A100 GPUs.

Data Preparation

Please first see data_preparation.md for a general knowledge of data preparation.

  • For Kinetics-400/600, as these are dynamic datasets (videos may be removed from YouTube), we employ this repo to download the original files and the annotatoins. Only a few number of corrupted videos are removed (around 50).
  • For other datasets, i.e., HMDB-51, UCF-101 and Diving-48, we use the data downloader provided by mmaction2 as aforementioned.

The full supported datasets are listed below (more details in supported_datasets.md):

HMDB51 (Homepage) (ICCV'2011) UCF101 (Homepage) (CRCV-IR-12-01) ActivityNet (Homepage) (CVPR'2015) Kinetics-[400/600/700] (Homepage) (CVPR'2017)
SthV1 (Homepage) (ICCV'2017) SthV2 (Homepage) (ICCV'2017) Diving48 (Homepage) (ECCV'2018) Jester (Homepage) (ICCV'2019)
Moments in Time (Homepage) (TPAMI'2019) Multi-Moments in Time (Homepage) (ArXiv'2019) HVU (Homepage) (ECCV'2020) OmniSource (Homepage) (ECCV'2020)

Models

We present a major part of the model results, the configuration files, and downloading links in the following table. The FLOPs is computed by fvcore, where we omit the classification head since it has low impact to the FLOPs.

Dataset Version Pretrain GFLOPs Param (M) Top-1 Config Download
K400 Tiny IN-1K 240 21.8 79.5 link link
K400 Small IN-1K 636 48.9 80.6 link link
K400 Base IN-1K 1072 86.8 81.1 link link
K600 Base IN-22K 1072 86.8 85.2 link link
Diving-48 Small K400 1908 48.9 81.8 link link
HMDB-51 Small K400 1908 48.9 76.4 link link
UCF-101 Small K400 1908 48.9 97.5 link link

Visualization

We visualize the attention maps at the last layer of our model generated by Grad-CAM on Kinetics-400. As shown in the following three gifs, our model successfully learns to focus on the relevant parts in the video clip. Left: flying kites. Middle: counting money. Right: walking dogs.

You can use the following commend to visualize the attention weights:

python demo/demo_gradcam.py 
    
     
     
       --target-layer-name 
      
        --out-filename 
        
       
      
     
    
   

For example, to visualize the last layer of DualFormer-S on a K400 video (-cii-Z0dW2E_000020_000030.mp4), please run:

python demo/demo_gradcam.py \
    configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py \
    checkpoints/k400/dualformer_small_patch244_window877.pth \
    /dataset/kinetics-400/train_files/-cii-Z0dW2E_000020_000030.mp4 \
    --target-layer-name backbone/blocks/3/3 --fps 10 \
    --out-filename output/-cii-Z0dW2E_000020_000030.gif

User Guide

Folder Structure

As our implementation is based on mmaction2, we specify our contributions as follows:

Testing

# single-gpu testing
python tools/test.py 
    
    
      --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh 
      
       
       
         --eval top_k_accuracy 
       
      
     
    
   

Example 1: to validate a DualFormer-T model on Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py checkpoints/k400/dualformer_tiny_patch244_window877.pth 8 --eval top_k_accuracy

You will obtain the result as follows:

Example 2: to validate a DualFormer-S model on Diving-48 dataset with 4 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_small_patch244_window877_diving48.py checkpoints/diving48/dualformer_small_patch244_window877.pth 4 --eval top_k_accuracy 

The output will be as follows:

Training from scratch

To train a video recognition model from scratch for Kinetics-400, please run:

# single-gpu training
python tools/train.py 
   
     [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
     
     
       [other optional arguments]

     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 

Training a DualFormer-S model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py 8 

Training with pre-trained 2D models

To train a video recognition model with pre-trained image models, please run:

# single-gpu training
python tools/train.py 
   
     --cfg-options model.backbone.pretrained=
    
      [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
      
      
        --cfg-options model.backbone.pretrained=
       
         [model.backbone.use_checkpoint=True] [other optional arguments] 
       
      
     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Training a DualFormer-B model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_base_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Training with Token Labelling

We also present the first attempt to improve the video recognition model by generalizing Token Labelling to videos as additional augmentations, in which MixToken is turned off as it does not work on our video datasets. For instance, to train a small version of DualFormer using DualFormer-B as the annotation model on the fly, please run:

bash tools/dist_train.sh configs/recognition/dualformer/dualformer_tiny_tokenlabel_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained='checkpoints/pretrained_2d/dualformer_tiny.pth' --validate 

Notice that we place the checkpoint of the annotation model at 'checkpoints/k400/dualformer_base_patch244_window877.pth'. You can change it to anywhere you want, or modify the path variable in this file.

We present two examples of visualization of token labelling on video data. For simiplicity, we omit several frames and thus each example only shows 5 frames with uniform sampling rate. For each frame, each value p(i,j) on the left hand side means the pseudo label (index) at each patch of the last stage provided by the annotation model.

  • Visualization example 1 (Correct label: pushing cart, index: 262).
  • Visualization example 2 (Correct label: dribbling basketball, index: 99).

              

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liang2021dualformer,
         title={DualFormer: Local-Global Stratified Transformer for Efficient Video Recognition}, 
         author={Yuxuan Liang and Pan Zhou and Roger Zimmermann and Shuicheng Yan},
         year={2021},
         journal={arXiv preprint arXiv:2112.04674},
}

Acknowledgement

We would like to thank the authors of the following helpful codebases:

Please kindly consider star these related packages as well. Thank you much for your attention.

Owner
Sea AI Lab
Sea AI Lab
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022