This repository contains small projects related to Neural Networks and Deep Learning in general.

Overview

ILearnDeepLearning.py

NumPy NN animation

Description

People say that nothing develops and teaches you like getting your hands dirty. This repository contains small projects mostly related to Deep Learning but also Data Science in general. Subjects are closely linekd with articles I publish on Medium and are intended to complement those blog posts. For me it is a way to document my learning process, but also to help others understand neural network related issues. I hope that the content of the repository will turn out to be interesting and, above all, useful. I encourage you both to read my posts as well as to check how the code works in the action.

Hit the ground running

# clone repository
git clone https://github.com/SkalskiP/ILearnDeepLearning.py.git

# navigate to main directory
cd ILearnDeepLearning.py

# set up and activate python environment
apt-get install python3-venv
python3 -m venv .env
source .env/bin/activate

# install all required packages
pip install -r requirements.txt

Deep Dive into Math Behind Deep Networks

Medium articule - Source code

This project is mainly focused on visualizing quite complex issues related to gradient descent, activation functions and visualization of classification boundaries while teaching the model. It is a code that complements the issues described in more detail in the article. Here are some of the visualizations that have been created.

Keras model frames Keras class boundries

Figure 1. A classification boundaries graph created in every iteration of the Keras model.
Finally, the frames were combined to create an animation.

Gradient descent

Figure 2. Visualization of the gradient descent.

Let’s code a Neural Network in plain NumPy

Medium articule - Source code

After a theoretical introduction, the time has come for practical implementation of the neural network using NumPy. In this notebook you will find full source code and a comparison of the performance of the basic implementation with the model created with Keras. You can find a wider commentary to understand the order and meaning of performed functions in a related article.

NumPy NN animation

Figure 3. Visualisation of the classification boundaries achieved with simple NumPy model

Preventing Deep Neural Network from Overfitting

Medium articule - Source code

This time I focused on the analysis of the reasons for overfitting and ways to prevent it. I made simulations of neural network regulation for different lambda coefficients, analyzing the change of values in the weight matrix. Take a look at the visualizations that were created in the process.

Change of accuracy

Figure 4. Classification boundaries created by: top right corner - linear regression;
bottom left corner - neural network; bottom right corner - neural network with regularisation

Change of accuracy

Figure 5. Change of accuracy values in subsequent epochs during neural network learning.

How to train Neural Network faster with optimizers?

Medium articule - Source code

As I worked on the last article, I had the opportunity to create my own neural network using only Numpy. It was a very challenging task, but at the same time it significantly broadened my understanding of the processes that take place inside the NN. Among others, this experience made me truly realize how many factors influence neural net's performance. Selected architecture,proper hyperparameter values or even correct initiation of parameters, are just some of those things... This time however, we will focus on the decision that has a huge impact on learning process speed, as well as the accuracy of obtained predictions - the choice of the optimization strategy.

Change of accuracy

Figure 6. Examples of points which are a problem for optimization algorithms.

Change of accuracy

Figure 7. Optimizers comparison.

Simple Method of Creating Animated Graphs

Medium articule - Source code

Both in my articles and projects I try to create interesting visualizations, which very often allow me to communicate my ideas much more effectively. I decided to create a short tutorial to show you how to easily create animated visualizations using Matplotlib. I also encourage you to read my post where I described, among other things, how to create a visualization of neural network learning process.

Change of accuracy

Figure 8. Lorenz Attractor created using the Matplotlib animation API.

Gentle Dive into Math Behind Convolutional Neural Networks

Medium articule - Source code

In this post on Medium I focused on the theoretical issues related to CNNs. It is a preparation for the upcoming mini project, which aims to create my own, simple implementation of this type of the Neural Network. As a result, this section of the repository is quite narrow and includes mainly simple visualizations of the effects of a convolution with a selected filter.

Convolution

Figure 9. Convolutionary effect with selected filters.

Chess, rolls or basketball? Let's create a custom object detection model

Medium articule - Source code

My posts on the Medium are usually very theoretical - I tend to analyse and describe the algorithms that define how Neural Networks work. This time, however, I decided to break this trend and show my readers how easy it is to train your own YOLO model, capable of detecting any objects we choose. In order to achieve this goal, we will need help from a very useful and easy-to-use implementation of YOLO. In short, not much coding, but a huge effect.

Convolution

Figure 10. Detection of players moving around the basketball court,
based on YouTube-8M dataset.

Knowing What and Why? - Explaining Image Classifier Predictions

Medium articule - Source code

As we implement highly responsible Computer Vision systems, it is becoming progressively clear that we must provide not only predictions but also explanations, as to what influenced its decision. In this post, I compared and benchmarked the most commonly used libraries for explaining the model predictions in the field of Image Classification - Eli5, LIME, and SHAP. I investigated the algorithms that they leverage, as well as compared the efficiency and quality of the provided explanations.

Explaining predictions

Figure 11. Comparison of explanations provided by ELI5, LIME and SHAP

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Interesting materials and ideas

This is a place where I collect links to interesting articles and papers, which I hope will become the basis for my next projects in the future.

  1. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
  2. Sequence to Sequence Learning with Neural Networks
  3. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
  4. BLEU: a Method for Automatic Evaluation of Machine Translation
  5. Neural Machine Translation by Jointly Learning to Align and Translate
  6. A (Long) Peek into Reinforcement Learning
  7. Why Momentum Really Works
  8. Improving the way neural networks learn
  9. Classification and Loss Evaluation - Softmax and Cross Entropy Loss
Owner
Piotr Skalski
AI Engineer @unleashlive and @ultralytics | Founder @ makesense.ai | Computer Science Graduate @ AGH UST Cracow | Civil Engineering Graduate @ Cracow UoT
Piotr Skalski
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022