[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

Related tags

Deep Learningsmyrf
Overview

SMYRF: Efficient attention using asymmetric clustering

Get started:

Colab

Abstract

We propose a novel type of balanced clustering algorithm to approximate attention. Attention complexity is reduced from O(N^2) to O(NlogN), where N is the sequence length. Our algorithm, SMYRF, uses Locality Sensitive Hashing (LSH) in a novel way by defining new Asymmetric transformations and an adaptive scheme that produces balanced clusters. The biggest advantage of SMYRF is that it can be used as a drop-in replacement for dense attention layers without any retraining. On the contrary, prior fast attention methods impose constraints (e.g. tight queries and keys) and require re-training from scratch. We apply our method to pre-trained state-of-the-art Natural Language Processing and Computer Vision models and we report significant memory and speed benefits. Notably, SMYRF-BERT outperforms (slightly) BERT on GLUE, while using $50%$ less memory. We also show that SMYRF can be used interchangeably with dense attention before and after training. Finally, we use SMYRF to train GANs with attention in high resolutions. Using a single TPU, we train BigGAN on Celeba-HQ, with attention at resolution 128x128 and 256x256, capable of generating realistic human faces.

Authors: Giannis Daras, Nikita Kitaev, Augustus Odena, Alexandros G. Dimakis

Results

Memory-quality trade-off

GLUE benchmark

Avg. # C CoLA MNLI-m/mm MRPC QNLI QQP RTE SST-2 STS-B
BERT128 82.69 1 1 57.83 84.43/84.68 88.41 91.31 89.70 65.70 93.46 88.73
SMYRF-BERT2x32 82.98 2 32 58.79 83.76/84.27 87.69 91.14 89.72 68.59 93.23 89.65
SMYRF-BERT2x16 81.74 2 16 58.90 82.86/83.49 85.72 89.53 89.33 64.98 93.12 87.75
BERT64 81.57 1 64 58.80 82.34/82.47 87.02 90.48 89.69 61.73 93.00 88.64
BERT32 73.56 1 32 56.40 64.51/63.41 77.89 79.81 88.59 55.23 92.66 83.53

Interchangeability of SMYRF and dense attention

Results on IMDB dataset. Using dense attention on inference consistently improves results, nearly matching dense attention perf.

Memory SMYRF Inference Accuracy
RoBERTa 100% 94.96%
SMYRF-RoBERTa 50% 93.72%
SMYRF-RoBERTa 50% 94.62%
BERT 100% 94.12%
SMYRF-BERT 50% 92.64%
SMYRF-BERT 50% 93.54%

Smyrf-BigGAN training on Celeba-HQ-128

Generated faces by a Smyrf-BigGAN trained on 128x128 resolution with attention at 128x128, using 50% of dense memory.

Results after 120k iterations:

Resolution Attention # C FID
BigGAN 128x128 64x64 1 4096 26.06
Smyrf-BigGAN 128x128 128x128 4 2048 25.03

where # denotes number of hashes and C number of queries per cluster.

What's here

The code hosted in this repository is the one we used to run all the experiments in the paper. Get started:

Colab

For a deeper dive, look at the examples/ folder where we have code for pre-training SMYRF-BigGAN, sampling from a pre-trained BigGAN with SMYRF, finetuning state-of-the-art NLP models with SMYRF and a lot more.

Acknowledgments

We would like to wholeheartedly thank the TensorFlow Research Cloud (TFRC) program that gave us access to Cloud TPUs and GCP credits to train our models.

The code for the NLP experiments is exclusively based on the HuggingFace transformers library. We are very grateful to the authors of the library for their work.

The code for the CV experiments is based on the PyTorch implementation of BigGAN available in this url. The code has been expanded to support training on TPUs. Again, we want to thank the author for open-sourcing this implementation.

You might also like...
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Code for Discriminative Sounding Objects Localization (NeurIPS 2020)
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Defending graph neural networks against adversarial attacks (NeurIPS 2020)
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected].

Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

Discovering Interpretable GAN Controls [NeurIPS 2020]
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Comments
  • Auto-regressive

    Auto-regressive

    Hi Giannis!

    Thanks for the great paper! I am interested in your asymmetric LSH, as I think having separate query / key space (as opposed to shared QK as in Reformer) will bring performance improvements in LSH-based attention.

    I saw that you recommended to a previous user to use this form of clustering for the auto-regressive case, and just wanted to probe if you had considered the scenario where a bucket of queries do not get matched with any keys from the past at all. This was an issue I had with trying to make separate QK space work with routing transformer, but just wondering if you had identified and found a solution to this problem.

    Phil

    opened by lucidrains 2
  • Logging and scoring

    Logging and scoring

    Currently logging and scoring is disabled for TPU BigGAN for maximum efficiency. We can probably re-write the logger and scorer to lower their performance bottleneck by converting most cpu materializations to XLA ops.

    bug example 
    opened by giannisdaras 0
  • Ema not working on TPU

    Ema not working on TPU

    Exponential moving average on weights of G is not working on TPUs. The problem is related to the loading of the state dict: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py#L614

    For now, we disable ema.

    bug example 
    opened by giannisdaras 0
Releases(1.0)
Owner
Giannis Daras
Machine Learning Researcher. Ph.D. student, UT Austin.
Giannis Daras
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022