An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

Overview

ALgorithmic_Trading_with_ML

An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

The following steps are followed :

  • Establishing a Baseline Performance
  • Tuning the Baseline Trading Algorithm
  • Evaluating a New Machine Learning Classifier
  • Creating an Evaluation Report

Establishing a Baseline Performance

  1. Importing the OHLCV dataset into a Pandas DataFrame.

  2. Trading signals are created using short- and long-window SMA values.

svm_original_report

  1. The data is splitted into training and testing datasets.

  2. Using the SVC classifier model from SKLearn's support vector machine (SVM) learning method to fit the training data and making predictions based on the testing data. Reviewing the predictions.

  3. Reviewing the classification report associated with the SVC model predictions.

svm_strategy_returns

  1. Creating a predictions DataFrame that contains columns for “Predicted” values, “Actual Returns”, and “Strategy Returns”.

  2. Creating a cumulative return plot that shows the actual returns vs. the strategy returns. Save a PNG image of this plot. This will serve as a baseline against which to compare the effects of tuning the trading algorithm.

Actual_Returns_Vs_SVM_Original_Returns


Tune the Baseline Trading Algorithm

The model’s input features are tuned to find the parameters that result in the best trading outcomes. The cumulative products of the strategy returns are compared. Below steps are followed:

  1. The training algorithm is tuned by adjusting the size of the training dataset. To do so, slice your data into different periods.

10_month_svm_report 24_month_sw_4_lw_100_report 48month_sw_4_lw_100_report

Answer the following question: What impact resulted from increasing or decreasing the training window?

Increasing the training dataset size alone did not improve the returns prediction. The precision and recall values for class -1 improved with increase in training set data and presion and recall values for class 1 decreased compared to the original training daatset size(3 months)

  1. The trading algorithm is tuned by adjusting the SMA input features. Adjusting one or both of the windows for the algorithm.

Answer the following question: What impact resulted from increasing or decreasing either or both of the SMA windows?

  • Increasing the short window for SMA increased impacted the precision and recall scores. It improves these scores till certain limit and then the scores decreases.
  • While increasing the short window when we equally incresase the long window we could achieve optimal maximized scores.
  • Another interesting obervation is that when the training dataset increses the short window and long window has to be incresed to get maximum output.

3_month_sw_8_lw_100_report

The set of parameters that best improved the trading algorithm returns. 48_month_sw_10_lw_270_report 48_month_sw_10_lw_270_return_comparison


Evaluating a New Machine Learning Classifier

The original parameters are applied to a second machine learning model to find its performance. To do so, below steps are followed:

  1. Importing a new classifier, we chose LogisticRegression as our new classifier.

  2. Using the original training data we fit the Logistic regression model.

  3. The Logistic Regression model is backtested to evaluate its performance.

Answer the following questions: Did this new model perform better or worse than the provided baseline model? Did this new model perform better or worse than your tuned trading algorithm?

This new model performed good but not as well as our provided baseline model or the tuned trading algorithm.

lr_report lr_return_comparison

Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021