An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

Overview

ALgorithmic_Trading_with_ML

An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

The following steps are followed :

  • Establishing a Baseline Performance
  • Tuning the Baseline Trading Algorithm
  • Evaluating a New Machine Learning Classifier
  • Creating an Evaluation Report

Establishing a Baseline Performance

  1. Importing the OHLCV dataset into a Pandas DataFrame.

  2. Trading signals are created using short- and long-window SMA values.

svm_original_report

  1. The data is splitted into training and testing datasets.

  2. Using the SVC classifier model from SKLearn's support vector machine (SVM) learning method to fit the training data and making predictions based on the testing data. Reviewing the predictions.

  3. Reviewing the classification report associated with the SVC model predictions.

svm_strategy_returns

  1. Creating a predictions DataFrame that contains columns for “Predicted” values, “Actual Returns”, and “Strategy Returns”.

  2. Creating a cumulative return plot that shows the actual returns vs. the strategy returns. Save a PNG image of this plot. This will serve as a baseline against which to compare the effects of tuning the trading algorithm.

Actual_Returns_Vs_SVM_Original_Returns


Tune the Baseline Trading Algorithm

The model’s input features are tuned to find the parameters that result in the best trading outcomes. The cumulative products of the strategy returns are compared. Below steps are followed:

  1. The training algorithm is tuned by adjusting the size of the training dataset. To do so, slice your data into different periods.

10_month_svm_report 24_month_sw_4_lw_100_report 48month_sw_4_lw_100_report

Answer the following question: What impact resulted from increasing or decreasing the training window?

Increasing the training dataset size alone did not improve the returns prediction. The precision and recall values for class -1 improved with increase in training set data and presion and recall values for class 1 decreased compared to the original training daatset size(3 months)

  1. The trading algorithm is tuned by adjusting the SMA input features. Adjusting one or both of the windows for the algorithm.

Answer the following question: What impact resulted from increasing or decreasing either or both of the SMA windows?

  • Increasing the short window for SMA increased impacted the precision and recall scores. It improves these scores till certain limit and then the scores decreases.
  • While increasing the short window when we equally incresase the long window we could achieve optimal maximized scores.
  • Another interesting obervation is that when the training dataset increses the short window and long window has to be incresed to get maximum output.

3_month_sw_8_lw_100_report

The set of parameters that best improved the trading algorithm returns. 48_month_sw_10_lw_270_report 48_month_sw_10_lw_270_return_comparison


Evaluating a New Machine Learning Classifier

The original parameters are applied to a second machine learning model to find its performance. To do so, below steps are followed:

  1. Importing a new classifier, we chose LogisticRegression as our new classifier.

  2. Using the original training data we fit the Logistic regression model.

  3. The Logistic Regression model is backtested to evaluate its performance.

Answer the following questions: Did this new model perform better or worse than the provided baseline model? Did this new model perform better or worse than your tuned trading algorithm?

This new model performed good but not as well as our provided baseline model or the tuned trading algorithm.

lr_report lr_return_comparison

The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022