A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

Overview

CapsGNN

PWC codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019).

Abstract

The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph embeddings. Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects. The attention module incorporated in CapsGNN is used to tackle graphs with various sizes which also enables the model to focus on critical parts of the graphs. Our extensive evaluations with 10 graph-structured datasets demonstrate that CapsGNN has a powerful mechanism that operates to capture macroscopic properties of the whole graph by data-driven. It outperforms other SOTA techniques on several graph classification tasks, by virtue of the new instrument.

This repository provides a PyTorch implementation of CapsGNN as described in the paper:

Capsule Graph Neural Network. Zhang Xinyi, Lihui Chen. ICLR, 2019. [Paper]

The core Capsule Neural Network implementation adapted is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"edges": [[0, 1],[1, 2],[2, 3],[3, 4]],
 "labels": {"0": "A", "1": "B", "2": "C", "3": "A", "4": "B"},
 "target": 1}

The **edges** key has an edge list value which descibes the connectivity structure. The **labels** key has labels for each node which are stored as a dictionary -- within this nested dictionary labels are values, node identifiers are keys. The **target** key has an integer value which is the class membership.

Outputs

The predictions are saved in the `output/` directory. Each embedding has a header and a column with the graph identifiers. Finally, the predictions are sorted by the identifier column.

Options

Training a CapsGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.
  --prediction-path   STR    Output predictions file.     Default is `output/watts_predictions.csv`.

Model options

  --epochs                      INT     Number of epochs.                  Default is 100.
  --batch-size                  INT     Number fo graphs per batch.        Default is 32.
  --gcn-filters                 INT     Number of filters in GCNs.         Default is 20.
  --gcn-layers                  INT     Number of GCNs chained together.   Default is 2.
  --inner-attention-dimension   INT     Number of neurons in attention.    Default is 20.  
  --capsule-dimensions          INT     Number of capsule neurons.         Default is 8.
  --number-of-capsules          INT     Number of capsules in layer.       Default is 8.
  --weight-decay                FLOAT   Weight decay of Adam.              Defatuls is 10^-6.
  --lambd                       FLOAT   Regularization parameter.          Default is 0.5.
  --theta                       FLOAT   Reconstruction loss weight.        Default is 0.1.
  --learning-rate               FLOAT   Adam learning rate.                Default is 0.01.

Examples

The following commands learn a model and save the predictions. Training a model on the default dataset:

$ python src/main.py

Training a CapsGNNN model for a 100 epochs.

$ python src/main.py --epochs 100

Changing the batch size.

$ python src/main.py --batch-size 128

License

Comments
  •  Coordinate Addition module & Routing

    Coordinate Addition module & Routing

    Hi, thanks for your codes of GapsGNN. And I have some questions about Coordinate Addition module and Routing.

    1. Do you use Coordinate Addition module in this codes?
    2. In /src/layers.py, line 137 : c_ij = torch.nn.functional.softmax(b_ij, dim=0) . At this time, b_ij.size(0) == 1, why use dim =0 ?

    Thanks again.

    opened by S-rz 4
  • Something about reshape

    Something about reshape

    Hi @benedekrozemberczki ! Thank you for your work!

    I have a question at line 61 and 62 of CapsGNN/src/capsgnn.py

    hidden_representations = torch.cat(tuple(hidden_representations)) hidden_representations = hidden_representations.view(1, self.args.gcn_layers, self.args.gcn_filters,-1)

    Why you directly reshape L*N,D to 1,L,D,N instead of using permutation after reshape, e.g

    hidden_representations = hidden_representations.view(1, self.args.gcn_layers, -1,self.args.gcn_filters).permute(0,1,3,2)

    Thank you for your help!

    opened by yanx27 4
  • Reproduce Issues

    Reproduce Issues

    Hi, thanks for your PyTorch codes of GapsGNN. I try to run the codes on NCI, DD, and other graph classification datasets, but it doesn't work (For example, training loss converges to 2.0, and test acc is about 50% on NCI1 after several iterations.) How should I do if I want to run these codes on NCI, DD and etc? Thanks again.

    opened by veophi 1
  • D&D dataset

    D&D dataset

    I notice some datasets in your paper such as D&D dataset. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by try-to-anything 1
  • Other datasets

    Other datasets

    I notice some datasets in your paper such as RE-M5K and RE-M12K. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by HongyangGao 1
  • Not able to install torch-scatter with torch 0.4.1

    Not able to install torch-scatter with torch 0.4.1

    Hello,

    Thanks for sharing the implementation.

    While I'm try to run your code I get some error for installing the environment. I have torch 0.4.1, but not able to install torch-scatter.Got the following error: fatal error: torch/extension.h: No such file or directory

    But I can successfully install them for torch 1.0.

    Is your code working for torch 1.0? Or how to install torch-scatter for torch 0.4.1?

    Details:

    $ pip list Package Version


    backcall 0.1.0
    certifi 2018.8.24
    .... torch 0.4.1.post2 torch-geometric 1.1.1
    torchfile 0.1.0
    torchvision 0.2.1
    tornado 5.1
    tqdm 4.31.1
    traitlets 4.3.2
    urllib3 1.23
    visdom 0.1.8.5
    vispy 0.5.3
    .... ....

    $pip install torch-scatter

    opened by jkuh626 1
  • how to repeat your expriments?

    how to repeat your expriments?

    Enumerating feature and target values.

    100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:00<00:00, 14754.82it/s]

    Training started.

    Epochs: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:05<00:00, 1.90it/s] CapsGNN (Loss=0.7279): 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.92it/s]

    Scoring.

    100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:00<00:00, 128.47it/s]

    Accuracy: 0.3333

    Accuracy is too small

    opened by robotzheng 1
  • default input dir for graphs is

    default input dir for graphs is "input"

    The README mentions the default train and test graphs to be in dataset/train and dataset/test, whereas they are in input/train and input/test respectively. The param_parser.py has the correct default paths nevertheless.

    opened by Utkarsh87 0
Releases(v_0001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021