Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Overview

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS and Windows.

Published at USENIX Security 2017.

Currently missing:

  • full documentation
  • agents for macOS and Windows (except for our test driver)

BibTex:

@inproceedings{schumilo2017kafl,
    author = {Schumilo, Sergej and Aschermann, Cornelius and Gawlik, Robert and Schinzel, Sebastian and Holz, Thorsten},
    title = {{kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels}},
    year = {2017},
    booktitle = {USENIX Security Symposium} 
}

Trophies

Setup

This is a short introduction on how to setup kAFL to fuzz Linux kernel components.

Download kAFL and install necessary components

$ git clone https://github.com/RUB-SysSec/kAFL.git
$ cd kAFL
$ chmod u+x install.sh
$ sudo ./install.sh
$ sudo reboot

Setup VM

  • Create QEMU hard drive image:
$ qemu-img create -f qcow2 linux.qcow2 20G
  • Retrieve an ISO file of the desired OS and install it inside a VM (in this case Ubuntu 16.04 server):
$ wget -O /path/to/where/to/store/ubuntu.iso http://de.releases.ubuntu.com/16.04/ubuntu-16.04.3-server-amd64.iso
$ qemu-system-x86_64 -cpu host -enable-kvm -m 512 -hda linux.qcow2 -cdrom ubuntu.iso -usbdevice tablet
  • Download kAFL and compile the loader agent:
git clone https://github.com/RUB-SysSec/kAFL.git
cd path/to/kAFL/kAFL-Fuzzer/agents
chmod u+x compile.sh
./compile.sh
  • Shutdown the VM

Prepare VM for kAFL fuzzing

  • On the host: Create Overlay and Snapshot Files:
mkdir snapshot && cd snapshot
qemu-img create -b /absolute/path/to/hdd/linux.qcow2 -f qcow2 overlay_0.qcow2
qemu-img create -f qcow2 ram.qcow2 512
  • Start the VM using QEMU-PT:
cd /path/to/kAFL
./qemu-2.9.0/x86_64-softmmu/qemu-system-x86_64 -hdb /path/to/snapshot/ram.qcow2 -hda /path/to/snapshot/overlay_0.qcow2 -machine pc-i440fx-2.6 -serial mon:stdio -enable-kvm -k de -m 512
  • (Optional) Install and load the vulnerable Test Driver:
cd path/to/kAFl/kAFL-Fuzzer/vuln_drivers/simple/linux_x86-64/
chmod u+x load.sh
sudo ./load.sh
  • Execute loader binary which is in path/to/kAFL/kAFL-Fuzzer/agents/linux_x86_64/loader/ as root. VM should freeze. Switch to the QEMU management console and create a snapshot:
# press CTRL-a + c
savevm kafl
q 

Compile and configure kAFL components

  • Edit /path/to/kAFL/kAFL-Fuzzer/kafl.ini (qemu-kafl_location to point to path/to/kAFL/qemu-2.9.0/x86_64-softmmu/qemu-system-x86_64)

  • Compile agents:

cd <KERNEL_AFL_ROOT>/kAFL-Fuzzer/agents
chmod u+x compile.sh
./compile.sh
  • Retrieve address ranges of loaded drivers:
cd /path/to/kAFL/kAFL-Fuzzer
python kafl_info.py /path/to/snapshot/ram.qcow2 /path/to/snapshot/ agents/linux_x86_64/info/info 512 -v

Start Fuzzing!

python kafl_fuzz.py /path/to/snapshot/ram.qcow2 /path/to/snapshot agents/linux_x86_64/fuzzer/kafl_vuln_test 512 /path/to/input/directory /path/to/working/directory -ip0 0xffffffffc0287000-0xffffffffc028b000 -v --Purge

The value ip0 is the address range of the fuzzing target.

Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023