Official PyTorch implementation of GDWCT (CVPR 2019, oral)

Overview


This repository provides the official code of GDWCT, and it is written in PyTorch.

Paper

Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation (link)
Wonwoong Cho1), Sungha Choi1,2), David Keetae Park1), Inkyu Shin3), Jaegul Choo1)
1)Korea University, 2)LG Electronics, 3)Hanyang University
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019 (Oral)

Additional resources for comprehending the paper

Comparison with baselines on CelebA dataset


Comparison with baselines on Artworks dataset


Prerequisites

  • Python 3.6
  • PyTorch 0.4.0+
  • Linux and NVIDIA GPU + CUDA CuDNN

Instructions

Installation

git clone https://github.com/WonwoongCho/GDWCT.git
cd GDWCT

Dataset

  1. Artworks dataset Please go to the github repository of CycleGAN (link) and download monet2photo, cezanne2photo, ukiyoe2photo, and vangogh2photo.

  2. CelebA dataset Our data loader necessitates data whose subdirectories are composed of 'trainA', 'trainB', 'testA', and 'testB'. Hence, after downloading CelebA dataset, you need to preprocess CelebA data by separating the data according to a target attribute of a translation. i.e., A: Male, B: Female.
    CelebA dataset can be easily downloaded with the following script.

bash download.sh celeba
  1. BAM dataset Similar to CelebA, you need to preprocess the data after downloading. Downloading the data is possible if you fulfill a given task (segmentation labeling). Please go to the link in order to download it.

We wish to directly provide the data we used in the paper, however it cannot be allowed because the data is preprocessed. We apologize for this.

Train and Test

Settings and hyperparameters are set in the config.yaml file. Please refer to specific descriptions provided in the file as comments. After setting, GDWCT can be trained or tested by the following script (NOTE: the values of 'MODE', 'LOAD_MODEL', and 'START' should be changed if a user want to test the model.):

python run.py

Pretrained models

Run the script if you need to download pretrained models (Smile <=> Non-Smile), (Bangs <=> Non-Bangs). The pretrained models will be downloaded and unzipped into ./pretrained_models/ directory.

bash download.sh pretrained

In order to test the pretrained models, please change several options in the config file, as described in the script below.
If the name of a pretrained model is G_A_CelebA_Bangs_G4_320000.pth,

N_GROUP: 4
SAVE_NAME: CelebA_Bangs_G4
MODEL_SAVE_PATH: pretrained_models/
START: 320000
LOAD_MODEL: True
MODE: test

Results

Citation

Please cite our paper if our work including this code is helpful for your research.

@InProceedings{GDWCT2019,
author = {Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, Jaegul Choo},
title = {Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
Owner
WonwoongCho
CV can be found at my homepage.
WonwoongCho
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022