A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

Overview

Update 7/5/2021

Note that for VerSe dataset partially visible vertebrae at the top or bottom of the scan (or both) were not annotated, while CTSpine1K annotated them, which caused the situation that in our previous-version paper the reported dice value on VerSe dataset is much lower than on CTSpine1K dataset (0.619 VS 0.840). Therefore, we annotated all visible vertebrea (see figure below) and recalculated the metrics(0.766 VS 0.840).

We have updated our paper on arxiv and uploaded the completed annotations for VerSe dataset to Google drive Google drive and Baiduyun (password:send email to [email protected]). label

Besides, we updated a more specific biconcave fracture case on Figure 1(F).

Update 6/11/2021

We upload the Path.csv to clarify the CT positions we used for COLONOG dataset and HNSCC-3DCT-RT dataset, and delete the dicom2nii.py file. We also upload the original CT images to Baiduyun (password:send email to [email protected])

Introduction for the CTSpine1K dataset

To advance the research in spinal image analysis, we hereby present a large-scale and comprehensive dataset: CTSpine1K. To build a comprehensive spine dataset that replicates practical appearance variations, we curate CTSpine1K from the following four open sources, totalling 1,005 CT volumes (over 500,000 labeled slices and over 11,000 vertebrae) of diverse appearance variations.

*COLONOG. This sub-dataset comes from the CT COLONOGRAPHY dataset related to a CT colonography trial12. We randomly select one of the two positions (we open the code for selecting them, dicom2nii.py), which have similar information, of each patient for our dataset . There are 825 CT scans and are in Digital Imaging and Communication in Medicine (DICOM) format.

*HNSCC-3DCT-RT. This sub-dataset contains three dimensional (3D) high-resolution fan-beam CT scans collected during pre-treatment, mid-treatment, and post-treatment using a Siemens 16-slice CT scanner with the standard clinical protocol for head-and-neck squamous cell carcinoma (HNSCC) patients13. These images are in DICOM format.

*MSD T10. This sub-dataset comes from the 10th Medical Segmentation Decathlon14. To attain more slices containing the spine, we select the task03_liver dataset consisting of 201 cases. These images are in Neuroimaging Informatics Technology Initiative (NIfTI) format (https://nifti.nimh.nih.gov/nifti-1).

*COVID-19. This sub-dataset consists of non-enhanced chest CTs from 632 patients with COVID-19 infections. The images were acquired at the point of care in an outbreak setting from patients with Reverse Transcription Polymerase Chain Reaction(RT-PCR) confirmation for the presence of SARS-CoV-215. We pick 40 scans with the images stored in NIfTI format.

We reformat all DICOM images to NIfTI to simplify data processing and de-identify images, meeting the institutional review board (IRB) policies of contributing sites. More details for those sub-datasets could be found in12–15. All existing sub-datasets are under Creative Commons license CC-BY-NC-SA and we will keep the license unchanged. It should be noted that for sub-dataset task03_liver and sub-dataset COVID-19, we only choose a part of cases from them, and in all these data sources, we exclude those cases of very low quality. The overview of our dataset and the thorough comparison with the VerSe Challenge dataset (We only chose those samples which are not cropped) can be seen in Table 1.

spine1K situation

For more information about CTSpine1K dataset, please read the following paper. Please also cite this paper if you are using CTSpine1K dataset for your research.

Yang Deng, Ce Wang, Yuan Hui, et al. CtSpine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv preprint arXiv:2105.14711 (2021). 

Downloading the CTSpine1K Dataset

The original images could be downloaded from correspongding URL above.

The segmentation masks and the pre-trained model are on Google drive or Baiduyun (password:send email to [email protected])

Annotation pipeline with nnUnet

Follow https://github.com/MIC-DKFZ/nnUNet/commit/058b695d61d34dda7f79cd36ab950a5d3e031653 to set and use nnUnet. The specific usage we here could be seen in ReadMe.md file. Our annotation pipeline is presented in figure 2 below. annotataion

Benchmarking results

The benchmarking results are shown in Table 2. table

Acknowledgement

Thank Febian's nnUnet and we appreciate the open-source sub-datasets we used.

Thank Jianji Wang and Guoxin Fan(MD) for their help in Fig.1(F)

Please feel free to email [email protected] if you have any question.

Owner
ICT.MIRACLE lab
The Medical Imaging, Robotics, Analytical Computing Laboratory & Engineering (MIRACLE) group
ICT.MIRACLE lab
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022