darija <-> english dictionary

Related tags

Deep Learningdataset
Overview

darija-dictionary

Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect. Hence, darija (Moroccan dialect) should be an active player in the domain of Natural Language Processing (NLP).

However, it turns out that step 0 in any serious engagement with darija in NLP will consist of translating its vocabulary to the widely used and most documented language in this field, namely English.

This open source project aims to be a reference in addressing this issue. We hope for the contribution of the Moroccan IT community in order to build up the largest dataset of darija-english vocabulary which will serve as a pedestal for any future application of NLP to benefit Moroccan people.


DODa video


How to contribute

We've made a tutorial for you in DODa's website


Guidelines / Recommendations

  • 3ndk ح dir ح xD (shout-out to this guy 😆 ), often try to use:
darija 3 7 9 8 2 - 'a' - 'i' 5 - 'kh'
arabic ع ح ق ه همزة خ
  • Try to use capitalization to differentiate between the following letters:
t T s S d D
ت ط س ص د ض
  • Arabic characters with two-letters Latin equivalent:
Arabic alphabet ش غ خ
Latin alphabet ch gh kh
  • Double characters to refer to the emphasis or "الشدة":
darija 7mam 7mmam
english pigeons bathroom
  • We usually don't add "e" in the end of darija words : louz instead of louze

  • We usually don't use "Z" or "th" for ظ ، ذ ، ث , because we generally don't use these letters in darija (except in northern Morocco, but for the sake of simplicity, we are focusing primarily on standard darija)

  • We do NOT use apostrophes. In fact, since we are working on csv files, apostrophes will break off words

  • We use spaces as word delimiters, not _ nor - : thank you instead of thank_you

  • Respect the number of columns in every row you add, you can use empty quotation marks "" in case you don't have extra variations

  • In every row, always start with the most used form (in your opinion of course) of the word in question

  • For future use of this dataset to train deep neural networks, try to reserve each row to similar variations of the same word. For instance, "sou9" and "marchi" both translate to "market", yet it's better to separate them into two different rows:

"sou9","souk","souq","market"

"marchi","","","market"

  • verbs.csv: The darija translation is reserved to the past tense of the third pronoun "he", whereas the other pronouns and tenses are handled in separate files. The English translation present the basic form (or root) of the English verb.

"ghnna","ghenna","ghanna","","","","sing"

  • masculine_feminine_plural.csv: If it does exist, feminine-plural translation column is for nouns. Regarding adjectives feminine-plural = feminine.

Citation

@misc{outchakoucht2021moroccan,
      title={Moroccan Dialect -Darija- Open Dataset},
      author={Aissam Outchakoucht and Hamza Es-Samaali},
      year={2021},
      eprint={2103.09687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DODa
Darija Open Dataset
DODa
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023