Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Overview

Neural Retrieval

License

Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as Wikipedia) to pre-train siamese neural retrieval models. The resulting models significantly improve over previous BM25 baselines as well as state-of-the-art neural methods.

This package provides support for leveraging BART-large for query synthesis as well as code for training and finetuning a transformer based neural retriever. We also provide pre-generated synthetic queries on Wikipedia, and relevant pre-trained models that are obtainable through our download scripts.

Paper: Davis Liang*, Peng Xu*, Siamak Shakeri, Cicero Nogueira dos Santos, Ramesh Nallapati, Zhiheng Huang, Bing Xiang, Embedding-based Zero-shot Retrieval through Query Generation, 2020.

Getting Started

dependencies:

pip install torch torchvision transformers tqdm

running setup

python setup.py install --user

Package Version
torch >=1.6.0
transformers >=3.0.2
tqdm 4.43.0

WikiGQ dataset and Pretrained Neural Retrieval Model

  • WikiGQ: We process the Wikipedia 2016 dump and split it into passages of maximum length 100 with respecting the sentence boundaries. We synthesis over 100M synthetic queries using BART-large models. The split passages and synthetic queries files can be downloaded from here.
  • Siamese-BERT-base-model: We release our siamese-bert-base-model trained on WikiGQ dataset. The model files can be downloaded from here.

Training and Evaluation

Example: Natural Questions (NQ)

Here we take an example on Natural Questions data. Please download the simplified version of the training set and also use supplied simplify_nq_example function in simplify_nq_data.py to create the simplified dev set as well.

process the data

We provide the python script to convert the data into the format our model consumes.

NQ_DIR=YOUR PATH TO SIMPLIFIED NQ TRAIN AND DEV FILES
python data_processsing/nq_preprocess.py \
--trainfile $NQ_DIR/v1.0-simplified-train.jsonl.gz \
--devfile $NQ_DIR/v1.0-simplified-dev.jsonl.gz \
--passagefile $NQ_DIR/all_passages.jsonl \
--queries_trainfile $NQ_DIR/train_queries.json \
--answers_trainfile $NQ_DIR/train_anwers.json \
--queries_devfile $NQ_DIR/dev_queries.json \
--answers_devfile $NQ_DIR/dev_answers.json \
--qrelsfile $NQ_DIR/all_qrels.txt

training

OUTPUT_DIR=./output
mkdir -p $OUTPUT_DIR
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--epochs 10 \
--sample_size 0 \
--batch_size 50 \
--embed_size 128 \
--print_iter 200 \
--eval_iter 0 \
--passagefile $NQ_DIR/all_passages.jsonl \
--train_queryfile $NQ_DIR/train_queries.json \
--train_answerfile $NQ_DIR/train_answers.json \
--save_model $OUTPUT_DIR/siamese_model.pt \
--share \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--train 

This will generate two model files in the OUTPUT_DIR: siamese_model.pt.doc and siamese_model.pt.query. They are exactly the same if your add --share during training.

Inference

  • Passage Embedding
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--embed_size 128 \
--passagefile $NQ_DIR/all_passages.jsonl \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--local_rank 0 \
--doc_embed \
--doc_embed_file $OUTPUT_DIR/psg_embeds.csv \
--save_model $OUTPUT_DIR/siamese_model.pt 
  • Running Retrieval
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--batch_size 100 \
--embed_size 128 \
--test_queryfile $NQ_DIR/dev_queries.json \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--local_rank 0 \
--topk 100 \
--query_embed \
--query_embed_file $OUTPUT_DIR/dev_query_embeds.csv \
--generate_retrieval \
--doc_embed_file $OUTPUT_DIR/psg_embeds.csv \
--save_model $OUTPUT_DIR/siamese_model.pt  \
--retrieval_outputfile $OUTPUT_DIR/dev_results.json
  • Evaluation

We use trec_eval to do the evaluation.

trec_eval $NQ_DIR/all_qrels.txt $OUTPUT_DIR/dev_results.json.txt -m recall 

BART Model for Query Generation

Finetune BART-QG Model on MSMARCO-PR dataset

MSMARCO_PATH=YOUR PATH TO MSMARCO FILES
QG_MODEL_OUTPUT=./qg_model_output
mkdir -p $QG_MODEL_OUTPUT
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/bart_qg.py \
--corpusfile $MSMARCO_PATH/collection.tsv \
--train_queryfile $MSMARCO_PATH/queries.train.tsv \
--train_qrelfile $MSMARCO_PATH/qrels.train.tsv \
--valid_queryfile $MSMARCO_PATH/queries.dev.tsv \
--valid_qrelfile $MSMARCO_PATH/qrels.dev.tsv \
--max_input_len 300 \
--max_output_len 100 \
--epochs 5 \
--lr 3e-5 \
--warmup 0.1 \
--wd 1e-3 \
--batch_size 24 \
--print_iter 100 \
--eval_iter 5000 \
--log ms_log \
--save_model $QG_MODEL_OUTPUT/best_qg.pt \
--gpu

Generate Synthetic Queries

As an example, we generate synthetic queries on NQ passages.

QG_OUTPUT_DIR=./qg_output
mkdir -p $QG_OUTPUT_DIR
python examples/bart_qg.py \
--test_corpusfile $QG_OUTPUT_DIR/all_passages.jsonl \
--test_outputfile $QG_OUTPUT_DIR/generated_questions.txt \
--generated_queriesfile $QG_OUTPUT_DIR/syn_queries.json \
--generated_answersfile $QG_OUTPUT_DIR/syn_answers.json \
--model_path $QG_MODEL_OUTPUT/best_qg_ms.pt \
--test \
--num_beams 5 \
--do_sample \
--num_samples 10 \
--top_p 0.95 \
--gpu

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022