Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Related tags

Deep Learningpy4fi2nd
Overview

Python for Finance (2nd ed., O'Reilly)

This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Data-Driven Finance (2nd edition) by Yves Hilpisch.

Visit the book page of O'Reilly under http://bit.ly/python-finance-2e or order the book under https://www.amazon.com/Python-Finance-Mastering-Data-Driven/dp/1492024333/.

The codes of the book are based on Python 3.7. The codes presented in this Github repository are tested for Python 3.6 since at the time of creating it, TensorFlow was not yet compatible with Python 3.7. Once this has happened, appropriate changes (e.g. to the conda yaml file, see below) will be made.

Python Packages

There is a yaml file for the installation of required Python packages in the repository. This is to be used with the conda package manager (see https://conda.io/docs/user-guide/tasks/manage-environments.html). If you do not have Miniconda or Anaconda installed, we recommend to install Miniconda 3.7 first (see https://conda.io/miniconda.html).

After you have cloned the repository, do on the shell (currently works on Mac OS):

cd py4fi2nd
conda env create -f py4fi2nd.yml
source activate py4fi2nd
jupyter notebook

Then you can navigate to the Jupyter Notebook files and get started.

Quant Platform

You can immediately use all codes and Jupyter Notebooks by registering on the Quant Platform under http://py4fi.pqp.io.

Python for Finance Training & University Certificate

Check out our Python for Finance & Algorithmic Trading online trainings under http://training.tpq.io.

Check out also our University Certificate Program in Python for Algorithmic Trading under http://certificate.tpq.io.

Company Information

© Dr. Yves J. Hilpisch | The Python Quants GmbH

The Quant Platform (http://pqp.io) and all codes/Jupyter notebooks come with no representations or warranties, to the extent permitted by applicable law.

http://tpq.io | [email protected] | http://twitter.com/dyjh

Quant Platform | http://pqp.io

Derivatives Analytics with Python (Wiley Finance) | http://dawp.tpq.io

Python for Finance (O'Reilly) | http://pff.tpq.io

Python for Finance Online Training | http://training.tpq.io

University Certificate in Python for Algorithmic Trading | http://certificate.tpq.io

Owner
Yves Hilpisch
CEO The Python Quants & The AI Machine | Adjunct Professor of Computational Finance | Python, AI, Finance & Algorithmic Trading
Yves Hilpisch
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022