Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

Related tags

Deep LearningCodeGen
Overview

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and model evaluation.

We provide reference implementations of the following papers:

We also provide pre-trained models for language modeling, translation and deobfuscation.

Dependencies

Run install_env.sh. We use black code formatter.

Data

Source code processors

This repository contains programming languages processors for C++, Java and Python. These processors include:

  • tokenization and detokenization
  • obfuscation
  • function extractions

These processors are based on TreeSitter parsers. As these parsers are available in more than 30 programming languages, one can easily create a new programming language processor.

Example of code tokenization:

from codegen_sources.preprocessing.lang_processors.java_processor import JavaProcessor

java_code = r"""class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, World!"); 
    }
}"""
java_processor = JavaProcessor(root_folder="<YOUR_TREESITER_FOLDER>")
tokenized_java_code = java_processor.tokenize_code(java_code)
print(tokenized_java_code)

BPE

This repository provides wrappers for fast BPE and Roberta BPE at file level.

Dataset Preprocessing

This repository contains a pipeline to create programming languages datasets. Now it supports four datasets modes:

  • Monolingual (ex: Java source code)
  • Monolingual Functions (ex: Java functions)
  • Monolingual Obfuscated (ex: Obfuscated Java source code. [Details here])
  • Monolingual Obfuscated Functions (ex: Obfuscated Java functions)

First, download C++ / Java / Python source code from Google BigQuery. To run our preprocessing pipeline, you need to donwload the raw source code on your machine in a JSON format. A sample of it is given here.

The pipeline does the following:

  • Source code extraction from json (.json.gz) and tokenization (.tok)
  • Train BPE codes and vocab
  • Apply BPE (.bpe)
  • Binarization (.pth)
  • Symlink folder with appropriate file names for .pth (XLM-syml). To be given as data_path argument for training.

To run the pipeline :

python -m codegen_sources.preprocessing.preprocess \
<DATA_PATH> \                            # folder containing json.gz
--langs java cpp python  \               # languages to process
--mode monolingual_functions \           # dataset mode
--bpe_mode=fast_bpe \                    # BPE mode. by default it is fast_BPE. can be roberta_bpe
--local=True \                           # Run on your local machine if True. If False run on a cluster (requires submitit setup)
--train_splits=1                         # Number of trainings splits

If you give several languages, the BPE codes and vocab will be learned commonly on these languages , so that you will have a common vocabulary to train one model for several languages. If you do not want that, launch the pipeline on every language separatly. These tests test the pipeline on different modes. It will give you an overview of the possible options.

Also, we provide the BPE codes and vocabulary here. These are the codes and vocabulary used for TransCoder and DOBF. They were learned on concatenated C++, Java, and Python data. If you want to use them instead of learning new ones, give the corresponding paths as fastbpe_code_path and fastbpe_vocab_path arguments.

In TransCoder and DOBF readmes, we provide the commands to preprocess the respective datasets.

Model

Overview

In this repository, we provide code to train transformer-based models (code based on XLM repository). The available training tasks are the following:

  • Masked Language Model (MLM)
  • Causal Language Model (CLM)
  • Supervised Machine translation (MT)
  • Classification
  • Deobfuscation = DOBF
  • Unsupervised Machine translation = TransCoder (Denoising auto encoding AE + Back Translation BT)

We evaluate our models with metrics adapted to each task (e.g. computation accuracy and BLEU score for TransCoder, subtoken score for Deobfuscation).

Also, we provide wrappers to fine-tune and evaluate our models on CodeXGLUE benchmark.

Download models

You can donwload the following models :

Re train specific models

To have details on how to retrain specific models, please refer to the README specific to each model.

References

TransCoder model (NeurIPS 2020)

[1] B. Roziere*, M.A. Lachaux*, L. Chanussot, G. Lample Unsupervised Translation of Programming Languages.

@article{roziere2020unsupervised,
  title={Unsupervised translation of programming languages},
  author={Roziere, Baptiste and Lachaux, Marie-Anne and Chanussot, Lowik and Lample, Guillaume},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

DOBF

[2] B. Roziere*, M.A. Lachaux*, M. Szafraniec , G. Lample DOBF: A Deobfuscation Pre-Training Objective for Programming Languages.

@article{roziere2021dobf,
  title={DOBF: A Deobfuscation Pre-Training Objective for Programming Languages},
  author={Roziere, Baptiste and Lachaux, Marie-Anne and Szafraniec, Marc and Lample, Guillaume},
  journal={arXiv preprint arXiv:2102.07492},
  year={2021}
}

* Equal Contribution

License

CodeGen is under the license detailed in the Creative Commons Attribution-NonCommercial 4.0 International license. See LICENSE for more details.

Owner
Facebook Research
Facebook Research
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022