Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Overview

Edge Tracing using Gaussian Process Regression

Repository storing python module which implements a framework to trace individual edges in an image using Gaussian process regression.


Abstract from paper on methodology

We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.

More information

Paper which describes this methodology has been accepted to be published in IEEE Transactions on Image Processing in December 2021 or January 2022 (TBC).

For open access to this paper for information on the algorithm, pseudocode, applications and discussion, see here


Getting started

Required packages

  • numpy
  • matplotlib
  • scikit-learn
  • scikit-image
  • KDEpy
  • scipy
  • time

Code demonstration

After cloning this repository, import the python module and the provided utilities script:

# Import relevant python packages
import numpy as np
from gp_edge_tracing import gpet_utils, gpet

We can now construct the same noisy, test image used in the paper:

# Create test image with single sinusoidal edge and simple image gradient
N = 500
test_img, true_edge = gpet_utils.construct_test_img(size=(N,N), amplitude=200, curvature=4, noise_level=0.05, ltype='sinusoidal', intensity=0.3, gaps=True)

kernel = gpet_utils.kernel_builder(size=(11,5), unit=False)
grad_img = gpet_utils.comp_grad_img(test_img, kernel)

This test image and corresponding image gradient is shown below.

testimg_imggrad

With specification of default parameters we can run the edge tracing algorithm:

# Define model parameters
kernel_params = {'kernel': 'RBF', 'sigma_f': 75, 'length_scale': 20}
delta_x = 5
score_thresh = 1
N_samples = 1000
noise_y = 1
seed = 1
keep_ratio = 0.1
init = true_edge[[0, -1],:][:, [1,0]]
obs = np.array([])
fix_endpoints=True
return_std = True

# Instantiate algorithm using parameters in __init__()
noisy_trace = gpet.GP_Edge_Tracing(init, grad_img, kernel_params, noise_y, obs, N_samples, score_thresh,
                                   delta_x, keep_ratio, seed, return_std, fix_endpoints)

# __call__() parameters and run algorithm on test image
# Change these verbosity parameters to monitor fitting procedure
print_final_diagnostics = False
show_init_post = False
show_post_iter = False
verbose = False
edge_pred, edge_credint = noisy_trace(print_final_diagnostics, show_init_post, show_post_iter, verbose)

We can then superimpose the edge prediction and 95% credible interval onto the test image and image gradient, quantitatively comparing the prediction with the ground truth, as shown below.

testimg_result

More information

please refer to this notebook for the code to reproduce this result, as well as where to find more information on the compulsory, tuning and verbosity parameters.


Contributors

Owner
Jamie Burke
I'm a third year PhD student at the University of Edinburgh currently developing novel image processing tools for automated ocular image analysis.
Jamie Burke
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
IEGAN β€” Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN β€” Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. πŸ’œ

Hacktober Fest 2021 πŸŽ‰ Open source is changing the world – one contribution at a time! πŸŽ‰ This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

ηŽ‹ηš“ζ³’ 147 Jan 07, 2023