Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Overview

Edge Tracing using Gaussian Process Regression

Repository storing python module which implements a framework to trace individual edges in an image using Gaussian process regression.


Abstract from paper on methodology

We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.

More information

Paper which describes this methodology has been accepted to be published in IEEE Transactions on Image Processing in December 2021 or January 2022 (TBC).

For open access to this paper for information on the algorithm, pseudocode, applications and discussion, see here


Getting started

Required packages

  • numpy
  • matplotlib
  • scikit-learn
  • scikit-image
  • KDEpy
  • scipy
  • time

Code demonstration

After cloning this repository, import the python module and the provided utilities script:

# Import relevant python packages
import numpy as np
from gp_edge_tracing import gpet_utils, gpet

We can now construct the same noisy, test image used in the paper:

# Create test image with single sinusoidal edge and simple image gradient
N = 500
test_img, true_edge = gpet_utils.construct_test_img(size=(N,N), amplitude=200, curvature=4, noise_level=0.05, ltype='sinusoidal', intensity=0.3, gaps=True)

kernel = gpet_utils.kernel_builder(size=(11,5), unit=False)
grad_img = gpet_utils.comp_grad_img(test_img, kernel)

This test image and corresponding image gradient is shown below.

testimg_imggrad

With specification of default parameters we can run the edge tracing algorithm:

# Define model parameters
kernel_params = {'kernel': 'RBF', 'sigma_f': 75, 'length_scale': 20}
delta_x = 5
score_thresh = 1
N_samples = 1000
noise_y = 1
seed = 1
keep_ratio = 0.1
init = true_edge[[0, -1],:][:, [1,0]]
obs = np.array([])
fix_endpoints=True
return_std = True

# Instantiate algorithm using parameters in __init__()
noisy_trace = gpet.GP_Edge_Tracing(init, grad_img, kernel_params, noise_y, obs, N_samples, score_thresh,
                                   delta_x, keep_ratio, seed, return_std, fix_endpoints)

# __call__() parameters and run algorithm on test image
# Change these verbosity parameters to monitor fitting procedure
print_final_diagnostics = False
show_init_post = False
show_post_iter = False
verbose = False
edge_pred, edge_credint = noisy_trace(print_final_diagnostics, show_init_post, show_post_iter, verbose)

We can then superimpose the edge prediction and 95% credible interval onto the test image and image gradient, quantitatively comparing the prediction with the ground truth, as shown below.

testimg_result

More information

please refer to this notebook for the code to reproduce this result, as well as where to find more information on the compulsory, tuning and verbosity parameters.


Contributors

Owner
Jamie Burke
I'm a third year PhD student at the University of Edinburgh currently developing novel image processing tools for automated ocular image analysis.
Jamie Burke
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022