git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

Related tags

Deep Learninglietorch
Overview

LieTorch: Tangent Space Backpropagation

Introduction

The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a multi-dimensional matrix of scalar elements, lietorch.SE3 is a multi-dimensional matrix of SE3 elements. We support common tensor manipulations such as indexing, reshaping, and broadcasting. Group operations can be composed into computation graphs and backpropagation is automatically peformed in the tangent space of each element. For more details, please see our paper:

Tangent Space Backpropagation for 3D Transformation Groups
Zachary Teed and Jia Deng, CVPR 2021

@inproceedings{teed2021tangent,
  title={Tangent Space Backpropagation for 3D Transformation Groups},
  author={Teed, Zachary and Deng, Jia},
  booktitle={Conference on Computer Vision and Pattern Recognition},
  year={2021},
}

Installation

Requirements:

  • Cuda >= 10.1 (with nvcc compiler)
  • PyTorch >= 1.6

We recommend installing within a virtual enviornment. Make sure you clone using the --recursive flag. If you are using Anaconda, the following command can be used to install all dependencies

git clone --recursive https://github.com/princeton-vl/lietorch.git
cd lietorch

conda create -n lie_env
conda activate lie_env
conda install scipy pyyaml pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

To run the examples, you will need OpenCV and Open3D. Depending on your operating system, OpenCV and Open3D can either be installed with pip or may need to be built from source

pip install opencv-python open3d

Installing:

Clone the repo using the --recursive flag and install using setup.py (may take up to 10 minutes)

git clone --recursive https://github.com/princeton-vl/lietorch.git
python setup.py install
./run_tests.sh

Overview

LieTorch currently supports the 3D transformation groups.

Group Dimension Action
SO3 3 rotation
RxSO3 4 rotation + scaling
SE3 6 rotation + translation
Sim3 7 rotation + translation + scaling

Each group supports the following operations:

Operation Map Description
exp g -> G exponential map
log G -> g logarithm map
inv G -> G group inverse
mul G x G -> G group multiplication
adj G x g -> g adjoint
adjT G x g*-> g* dual adjoint
act G x R3 -> R3 action on point (set)
act4 G x P3 -> P3 action on homogeneous point (set)

 

Simple Example:

Compute the angles between all pairs of rotation matrices

import torch
from lietorch import SO3

phi = torch.randn(8000, 3, device='cuda', requires_grad=True)
R = SO3.exp(phi)

# relative rotation matrix, SO3 ^ {100 x 100}
dR = R[:,None].inv() * R[None,:]

# 100x100 matrix of angles
ang = dR.log().norm(dim=-1)

# backpropogation in tangent space
loss = ang.sum()
loss.backward()

Examples

We provide real use cases in the examples directory

  1. Pose Graph Optimization
  2. Deep SE3/Sim3 Registrtion
  3. RGB-D SLAM / VO

Acknowledgements

Many of the Lie Group implementations are adapted from Sophus.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022