[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

Related tags

Deep LearningFedBN
Overview

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

This is the PyTorch implemention of our paper FedBN: Federated Learning on Non-IID Features via Local Batch Normalization by Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp and Qi Dou

Abstract

The emerging paradigm of federated learning (FL) strives to enable collaborative training of deep models on the network edge without centrally aggregating raw data and hence improving data privacy. In most cases, the assumption of independent and identically distributed samples across local clients does not hold for federated learning setups. Under this setting, neural network training performance may vary significantly according to the data distribution and even hurt training convergence. Most of the previous work has focused on a difference in the distribution of labels. Unlike those settings, we address an important problem of FL, e.g., different scanner/sensors in medical imaging, different scenery distribution in autonomous driving (highway vs. city), where local clients may store examples with different marginal or conditional feature distributions compared to other nodes, which we denote as feature shift non-iid. In this work, we propose an effective method that uses local batch normalization to alleviate the feature shift before averaging models. The resulting scheme, called FedBN, outperforms both classical FedAvg, as well as the state-of-the-art for non-iid data (FedProx) on our extensive experiments. These empirical results are supported by a convergence analysis that shows in a simplified setting that FedBN has a faster convergence rate in expectation than FedAvg.

avatar

Usage

Setup

pip

See the requirements.txt for environment configuration.

pip install -r requirements.txt

conda

We recommend using conda to quick setup the environment. Please use the following commands.

conda env create -f environment.yaml
conda activate fedbn

Dataset & Pretrained Modeel

Benchmark(Digits)

  • Please download our pre-processed datasets here, put under data/ directory and perform following commands:
    cd ./data
    unzip digit_dataset.zip
  • Please download our pretrained model here and put under snapshots/ directory, perform following commands:
    cd ./snapshots
    unzip digit_model.zip

office-caltech10

  • Please download our pre-processed datasets here, put under data/ directory and perform following commands:
    cd ./data
    unzip office_caltech_10_dataset.zip
  • Please download our pretrained model here and put under snapshots/ directory, perform following commands:
    cd ./snapshots
    unzip office_caltech_10_model.zip

DomainNet

  • Please first download our splition here, put under data/ directory and perform following commands:
    cd ./data
    unzip domainnet_dataset.zip
  • then download dataset including: Clipart, Infograph, Painting, Quickdraw, Real, Sketch, put under data/DomainNet directory and unzip them.
    cd ./data/DomainNet
    unzip [filename].zip
  • Please download our pretrained model here and put under snapshots/ directory, perform following commands:
    cd ./snapshots
    unzip domainnet_model.zip

Train

Federated Learning

Please using following commands to train a model with federated learning strategy.

  • --mode specify federated learning strategy, option: fedavg | fedprox | fedbn
cd federated
# benchmark experiment
python fed_digits.py --mode fedbn

# office-caltech-10 experiment
python fed_office.py --mode fedbn

# DomaiNnet experiment
python fed_domainnet.py --mode fedbn

SingleSet

Please using following commands to train a model using singleset data.

  • --data specify the single dataset
cd singleset 
# benchmark experiment, --data option: svhn | usps | synth | mnistm | mnist
python single_digits.py --data svhn

# office-caltech-10 experiment --data option: amazon | caltech | dslr | webcam
python single_office.py --data amazon

# DomaiNnet experiment --data option: clipart | infograph | painting | quickdraw | real | sketch
python single_domainnet.py --data clipart

Test

cd federated
# benchmark experiment
python fed_digits.py --mode fedbn --test

# office-caltech-10 experiment
python fed_office.py --mode fedbn --test

# DomaiNnet experiment
python fed_domainnet.py --mode fedbn --test

Citation

If you find the code and dataset useful, please cite our paper.

@inproceedings{
li2021fedbn,
title={Fed{\{}BN{\}}: Federated Learning on Non-{\{}IID{\}} Features via Local Batch Normalization},
author={Xiaoxiao Li and Meirui JIANG and Xiaofei Zhang and Michael Kamp and Qi Dou},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=6YEQUn0QICG}
}
Owner
[email protected]
Medical Image Analysis, Artificial Intelligence, Robotics
<a href=[email protected]">
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022