CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Related tags

Deep LearningCDTrans
Overview

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv]

This is the official repository for CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Introduction

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain level or category level, using convolution neural networks (CNNs)-based frameworks. With the success of Transformer in various tasks, we find that the cross-attention in Transformer is robust to the noisy input pairs for better feature alignment, thus in this paper Transformer is adopted for the challenging UDA task. Specifically, to generate accurate input pairs, we design a two-way center-aware labeling algorithm to produce pseudo labels for target samples. Along with the pseudo labels, a weight-sharing triple-branch transformer framework is proposed to apply self-attention and cross-attention for source/target feature learning and source-target domain alignment, respectively. Such design explicitly enforces the framework to learn discriminative domain-specific and domain-invariant representations simultaneously. The proposed method is dubbed CDTrans (cross-domain transformer), and it provides one of the first attempts to solve UDA tasks with a pure transformer solution. Extensive experiments show that our proposed method achieves the best performance on all public UDA datasets including Office-Home, Office-31, VisDA-2017, and DomainNet.

framework

Results

Table 1 [UDA results on Office-31]

Methods Avg. A->D A->W D->A D->W W->A W->D
Baseline(DeiT-S) 86.7 87.6 86.9 74.9 97.7 73.5 99.6
model model model
CDTrans(DeiT-S) 90.4 94.6 93.5 78.4 98.2 78 99.6
model model model model model model
Baseline(DeiT-B) 88.8 90.8 90.4 76.8 98.2 76.4 100
model model model
CDTrans(DeiT-B) 92.6 97 96.7 81.1 99 81.9 100
model model model model model model

Table 2 [UDA results on Office-Home]

Methods Avg. Ar->Cl Ar->Pr Ar->Re Cl->Ar Cl->Pr Cl->Re Pr->Ar Pr->Cl Pr->Re Re->Ar Re->Cl Re->Pr
Baseline(DeiT-S) 69.8 55.6 73 79.4 70.6 72.9 76.3 67.5 51 81 74.5 53.2 82.7
model model model model
CDTrans(DeiT-S) 74.7 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5
model model model model model model model model model model model model
Baseline(DeiT-B) 74.8 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86
model model model model
CDTrans(DeiT-B) 80.5 68.8 85 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82 66 90.6
model model model model model model model model model model model model

Table 3 [UDA results on VisDA-2017]

Methods Per-class plane bcycl bus car horse knife mcycl person plant sktbrd train truck
Baseline(DeiT-B) 67.3 (model) 98.1 48.1 84.6 65.2 76.3 59.4 94.5 11.8 89.5 52.2 94.5 34.1
CDTrans(DeiT-B) 88.4 (model) 97.7 86.39 86.87 83.33 97.76 97.16 95.93 84.08 97.93 83.47 94.59 55.3

Table 4 [UDA results on DomainNet]

Base-S clp info pnt qdr rel skt Avg. CDTrans-S clp info pnt qdr rel skt Avg.
clp - 21.2 44.2 15.3 59.9 46.0 37.3 clp - 25.3 52.5 23.2 68.3 53.2 44.5
model model model model model model model
info 36.8 - 39.4 5.4 52.1 32.6 33.3 info 47.6 - 48.3 9.9 62.8 41.1 41.9
model model model model model model model
pnt 47.1 21.7 - 5.7 60.2 39.9 34.9 pnt 55.4 24.5 - 11.7 67.4 48.0 41.4
model model model model model model model
qdr 25.0 3.3 10.4 - 18.8 14.0 14.3 qdr 36.6 5.3 19.3 - 33.8 22.7 23.5
model model model model model model model
rel 54.8 23.9 52.6 7.4 - 40.1 35.8 rel 61.5 28.1 56.8 12.8 - 47.2 41.3
model model model model model model model
skt 55.6 18.6 42.7 14.9 55.7 - 37.5 skt 64.3 26.1 53.2 23.9 66.2 - 46.7
model model model model model model model
Avg. 43.9 17.7 37.9 9.7 49.3 34.5 32.2 Avg. 53.08 21.86 46.02 16.3 59.7 42.44 39.9
Base-B clp info pnt qdr rel skt Avg. CDTrans-B clp info pnt qdr rel skt Avg.
clp - 24.2 48.9 15.5 63.9 50.7 40.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
model model model model model model model
info 43.5 - 44.9 6.5 58.8 37.6 38.3 info 57.0 - 54.4 12.8 69.5 48.4 48.4
model model model model model model model
pnt 52.8 23.3 - 6.6 64.6 44.5 38.4 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
model model model model model model model
qdr 31.8 6.1 15.6 - 23.4 18.9 19.2 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
model model model model model model model
rel 58.9 26.3 56.7 9.1 - 45.0 39.2 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
model model model model model model model
skt 60.0 21.1 48.4 16.6 61.7 - 41.6 skt 69.0 29.6 59.0 27.2 72.5 - 51.5
model model model model model model model
Avg. 49.4 20.2 42.9 10.9 54.5 39.3 36.2 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

Requirements

Installation

pip install -r requirements.txt
(Python version is the 3.7 and the GPU is the V100 with cuda 10.1, cudatoolkit 10.1)

Prepare Datasets

Download the UDA datasets Office-31, Office-Home, VisDA-2017, DomainNet

Then unzip them and rename them under the directory like follow: (Note that each dataset floader needs to make sure that it contains the txt file that contain the path and lable of the picture, which is already in data/the_dataset of this project.)

data
├── OfficeHomeDataset
│   │── class_name
│   │   └── images
│   └── *.txt
├── domainnet
│   │── class_name
│   │   └── images
│   └── *.txt
├── office31
│   │── class_name
│   │   └── images
│   └── *.txt
├── visda
│   │── train
│   │   │── class_name
│   │   │   └── images
│   │   └── *.txt 
│   └── validation
│       │── class_name
│       │   └── images
│       └── *.txt 

Prepare DeiT-trained Models

For fair comparison in the pre-training data set, we use the DeiT parameter init our model based on ViT. You need to download the ImageNet pretrained transformer model : DeiT-Small, DeiT-Base and move them to the ./data/pretrainModel directory.

Training

We utilize 1 GPU for pre-training and 2 GPUs for UDA, each with 16G of memory.

Scripts.

Command input paradigm

bash scripts/[pretrain/uda]/[office31/officehome/visda/domainnet]/run_*.sh [deit_base/deit_small]

For example

DeiT-Base scripts

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_base
bash scripts/uda/office31/run_office_amazon.sh deit_base

#Office-Home    Source: Art      ->  Target: Clipart, Product, Real_World
bash scripts/pretrain/officehome/run_officehome_Ar.sh deit_base
bash scripts/uda/officehome/run_officehome_Ar.sh deit_base

# VisDA-2017    Source: train    ->  Target: validation
bash scripts/pretrain/visda/run_visda.sh deit_base
bash scripts/uda/visda/run_visda.sh deit_base

# DomainNet     Source: Clipart  ->  Target: painting, quickdraw, real, sketch, infograph
bash scripts/pretrain/domainnet/run_domainnet_clp.sh deit_base
bash scripts/uda/domainnet/run_domainnet_clp.sh deit_base

DeiT-Small scripts Replace deit_base with deit_small to run DeiT-Small results. An example of training on office-31 is as follows:

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_small
bash scripts/uda/office31/run_office_amazon.sh deit_small

Evaluation

# For example VisDA-2017
python test.py --config_file 'configs/uda.yml' MODEL.DEVICE_ID "('0')" TEST.WEIGHT "('../logs/uda/vit_base/visda/transformer_best_model.pth')" DATASETS.NAMES 'VisDA' DATASETS.NAMES2 'VisDA' OUTPUT_DIR '../logs/uda/vit_base/visda/' DATASETS.ROOT_TRAIN_DIR './data/visda/train/train_image_list.txt' DATASETS.ROOT_TRAIN_DIR2 './data/visda/train/train_image_list.txt' DATASETS.ROOT_TEST_DIR './data/visda/validation/valid_image_list.txt'  

Acknowledgement

Codebase from TransReID

This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022