CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Related tags

Deep LearningCDTrans
Overview

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv]

This is the official repository for CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Introduction

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain level or category level, using convolution neural networks (CNNs)-based frameworks. With the success of Transformer in various tasks, we find that the cross-attention in Transformer is robust to the noisy input pairs for better feature alignment, thus in this paper Transformer is adopted for the challenging UDA task. Specifically, to generate accurate input pairs, we design a two-way center-aware labeling algorithm to produce pseudo labels for target samples. Along with the pseudo labels, a weight-sharing triple-branch transformer framework is proposed to apply self-attention and cross-attention for source/target feature learning and source-target domain alignment, respectively. Such design explicitly enforces the framework to learn discriminative domain-specific and domain-invariant representations simultaneously. The proposed method is dubbed CDTrans (cross-domain transformer), and it provides one of the first attempts to solve UDA tasks with a pure transformer solution. Extensive experiments show that our proposed method achieves the best performance on all public UDA datasets including Office-Home, Office-31, VisDA-2017, and DomainNet.

framework

Results

Table 1 [UDA results on Office-31]

Methods Avg. A->D A->W D->A D->W W->A W->D
Baseline(DeiT-S) 86.7 87.6 86.9 74.9 97.7 73.5 99.6
model model model
CDTrans(DeiT-S) 90.4 94.6 93.5 78.4 98.2 78 99.6
model model model model model model
Baseline(DeiT-B) 88.8 90.8 90.4 76.8 98.2 76.4 100
model model model
CDTrans(DeiT-B) 92.6 97 96.7 81.1 99 81.9 100
model model model model model model

Table 2 [UDA results on Office-Home]

Methods Avg. Ar->Cl Ar->Pr Ar->Re Cl->Ar Cl->Pr Cl->Re Pr->Ar Pr->Cl Pr->Re Re->Ar Re->Cl Re->Pr
Baseline(DeiT-S) 69.8 55.6 73 79.4 70.6 72.9 76.3 67.5 51 81 74.5 53.2 82.7
model model model model
CDTrans(DeiT-S) 74.7 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5
model model model model model model model model model model model model
Baseline(DeiT-B) 74.8 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86
model model model model
CDTrans(DeiT-B) 80.5 68.8 85 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82 66 90.6
model model model model model model model model model model model model

Table 3 [UDA results on VisDA-2017]

Methods Per-class plane bcycl bus car horse knife mcycl person plant sktbrd train truck
Baseline(DeiT-B) 67.3 (model) 98.1 48.1 84.6 65.2 76.3 59.4 94.5 11.8 89.5 52.2 94.5 34.1
CDTrans(DeiT-B) 88.4 (model) 97.7 86.39 86.87 83.33 97.76 97.16 95.93 84.08 97.93 83.47 94.59 55.3

Table 4 [UDA results on DomainNet]

Base-S clp info pnt qdr rel skt Avg. CDTrans-S clp info pnt qdr rel skt Avg.
clp - 21.2 44.2 15.3 59.9 46.0 37.3 clp - 25.3 52.5 23.2 68.3 53.2 44.5
model model model model model model model
info 36.8 - 39.4 5.4 52.1 32.6 33.3 info 47.6 - 48.3 9.9 62.8 41.1 41.9
model model model model model model model
pnt 47.1 21.7 - 5.7 60.2 39.9 34.9 pnt 55.4 24.5 - 11.7 67.4 48.0 41.4
model model model model model model model
qdr 25.0 3.3 10.4 - 18.8 14.0 14.3 qdr 36.6 5.3 19.3 - 33.8 22.7 23.5
model model model model model model model
rel 54.8 23.9 52.6 7.4 - 40.1 35.8 rel 61.5 28.1 56.8 12.8 - 47.2 41.3
model model model model model model model
skt 55.6 18.6 42.7 14.9 55.7 - 37.5 skt 64.3 26.1 53.2 23.9 66.2 - 46.7
model model model model model model model
Avg. 43.9 17.7 37.9 9.7 49.3 34.5 32.2 Avg. 53.08 21.86 46.02 16.3 59.7 42.44 39.9
Base-B clp info pnt qdr rel skt Avg. CDTrans-B clp info pnt qdr rel skt Avg.
clp - 24.2 48.9 15.5 63.9 50.7 40.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
model model model model model model model
info 43.5 - 44.9 6.5 58.8 37.6 38.3 info 57.0 - 54.4 12.8 69.5 48.4 48.4
model model model model model model model
pnt 52.8 23.3 - 6.6 64.6 44.5 38.4 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
model model model model model model model
qdr 31.8 6.1 15.6 - 23.4 18.9 19.2 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
model model model model model model model
rel 58.9 26.3 56.7 9.1 - 45.0 39.2 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
model model model model model model model
skt 60.0 21.1 48.4 16.6 61.7 - 41.6 skt 69.0 29.6 59.0 27.2 72.5 - 51.5
model model model model model model model
Avg. 49.4 20.2 42.9 10.9 54.5 39.3 36.2 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

Requirements

Installation

pip install -r requirements.txt
(Python version is the 3.7 and the GPU is the V100 with cuda 10.1, cudatoolkit 10.1)

Prepare Datasets

Download the UDA datasets Office-31, Office-Home, VisDA-2017, DomainNet

Then unzip them and rename them under the directory like follow: (Note that each dataset floader needs to make sure that it contains the txt file that contain the path and lable of the picture, which is already in data/the_dataset of this project.)

data
├── OfficeHomeDataset
│   │── class_name
│   │   └── images
│   └── *.txt
├── domainnet
│   │── class_name
│   │   └── images
│   └── *.txt
├── office31
│   │── class_name
│   │   └── images
│   └── *.txt
├── visda
│   │── train
│   │   │── class_name
│   │   │   └── images
│   │   └── *.txt 
│   └── validation
│       │── class_name
│       │   └── images
│       └── *.txt 

Prepare DeiT-trained Models

For fair comparison in the pre-training data set, we use the DeiT parameter init our model based on ViT. You need to download the ImageNet pretrained transformer model : DeiT-Small, DeiT-Base and move them to the ./data/pretrainModel directory.

Training

We utilize 1 GPU for pre-training and 2 GPUs for UDA, each with 16G of memory.

Scripts.

Command input paradigm

bash scripts/[pretrain/uda]/[office31/officehome/visda/domainnet]/run_*.sh [deit_base/deit_small]

For example

DeiT-Base scripts

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_base
bash scripts/uda/office31/run_office_amazon.sh deit_base

#Office-Home    Source: Art      ->  Target: Clipart, Product, Real_World
bash scripts/pretrain/officehome/run_officehome_Ar.sh deit_base
bash scripts/uda/officehome/run_officehome_Ar.sh deit_base

# VisDA-2017    Source: train    ->  Target: validation
bash scripts/pretrain/visda/run_visda.sh deit_base
bash scripts/uda/visda/run_visda.sh deit_base

# DomainNet     Source: Clipart  ->  Target: painting, quickdraw, real, sketch, infograph
bash scripts/pretrain/domainnet/run_domainnet_clp.sh deit_base
bash scripts/uda/domainnet/run_domainnet_clp.sh deit_base

DeiT-Small scripts Replace deit_base with deit_small to run DeiT-Small results. An example of training on office-31 is as follows:

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_small
bash scripts/uda/office31/run_office_amazon.sh deit_small

Evaluation

# For example VisDA-2017
python test.py --config_file 'configs/uda.yml' MODEL.DEVICE_ID "('0')" TEST.WEIGHT "('../logs/uda/vit_base/visda/transformer_best_model.pth')" DATASETS.NAMES 'VisDA' DATASETS.NAMES2 'VisDA' OUTPUT_DIR '../logs/uda/vit_base/visda/' DATASETS.ROOT_TRAIN_DIR './data/visda/train/train_image_list.txt' DATASETS.ROOT_TRAIN_DIR2 './data/visda/train/train_image_list.txt' DATASETS.ROOT_TEST_DIR './data/visda/validation/valid_image_list.txt'  

Acknowledgement

Codebase from TransReID

BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022