Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.

Overview

Models Playground

 🗂️ Upload a Preprocessed Dataset

 🌠 Choose whether to perform Classification or Regression

 🦹 Enter the Dependent Variable

 🪓 Type in the split ratio

 ⚖️ Select the Scaling method
  
 ⚙️ Pick a Model and set its Hyper-Parameters

 📉 Train it and check its Performance Metrics on Train and Test data

 🩺 Diagnose possible overitting and experiment with other settings

 📠 Copy the code snippet to run in jupyter or colab

 🚀 If you find the model to be performing well, save the model's hyperparameters with a single click

 🎑 View all the saved models.

What is the idea?

  • Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward
  • Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
  • Just upload the preprocessed dataset, choose the option to perform classification or regression. Enter the dependent variable, type in the split ratio and choose a scaling method(MinMaxScaler or StandardScaler), and enter the columns to be scaled.
  • Select a model and adjust its hyperparameters to get the best result.
  • Copy the automatically generated code snippet to train in Jupyter or Colab.
  • If you find the model to be performing well click the save hyperparameters button to save the results to a data.txt file.
  • To view all the hyperparameters saved till now, display them on the screen with a single click.

Built Using:




Instructions to run:

  • Pre-requisites:

    • Python 3.6 or 3.7 or 3.8
    • Dependencies from requirements.txt
  • Directions to Install

    • First clone this repository onto your system.
    • Then, create a Virtual Environment and install the packages from requirements.txt:
    • Navigate to this repository, create a Virtual Environment and activate it:
    cd path/to/cloned/repo
    
    ##(for Mac and Linux)
    python3 -m venv env 
    source env/bin/activate
    ##(for Windows)
    python3 -m venv env
    .\env\Scripts\activate

    Install the python dependencies from requirements.txt:

    pip install -r requirements.txt
  • Directions to Execute

    Run the following command in the terminal -

    streamlit run app.py

Different Screens







Owner
Data is the new science which I am trying to learn.
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022