A Python framework for conversational search

Overview

Chatty Goose

Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting


PyPI LICENSE

Installation

  1. Make sure Java 11+ and Python 3.7+ are installed

  2. Install the chatty-goose PyPI module

pip install chatty-goose
  1. If you are using T5 or BERT, make sure to install PyTorch 1.4.0 - 1.7.1 using your specific platform instructions. Note that PyTorch 1.8 is currently incompatible due to the transformers version we currently use. Also make sure to install the corresponding torchtext version.

  2. Download the English model for spaCy

python -m spacy download en_core_web_sm

Quickstart Guide

The following example shows how to initialize a searcher and build a ConversationalQueryRewriter agent from scratch using HQE and T5 as first-stage retrievers, and a BERT reranker. To see a working example agent, see chatty_goose/agents/chat.py.

First, load a searcher

from pyserini.search import SimpleSearcher

# Option 1: load a prebuilt index
searcher = SimpleSearcher.from_prebuilt_index("INDEX_NAME_HERE")
# Option 2: load a local Lucene index
searcher = SimpleSearcher("PATH_TO_INDEX")

searcher.set_bm25(0.82, 0.68)

Next, initialize one or more first-stage CQR retrievers

from chatty_goose.cqr import Hqe, Ntr
from chatty_goose.settings import HqeSettings, NtrSettings

hqe = Hqe(searcher, HqeSettings())
ntr = Ntr(NtrSettings())

Load a reranker

from chatty_goose.util import build_bert_reranker

reranker = build_bert_reranker()

Create a new RetrievalPipeline

from chatty_goose.pipeline import RetrievalPipeline

rp = RetrievalPipeline(searcher, [hqe, ntr], searcher_num_hits=50, reranker=reranker)

And we're done! Simply call rp.retrieve(query) to retrieve passages, or call rp.reset_history() to reset the conversational history of the retrievers.

Running Experiments

  1. Clone the repo and all submodules (git submodule update --init --recursive)

  2. Clone and build Anserini for evaluation tools

  3. Install dependencies

pip install -r requirements.txt
  1. Follow the instructions under docs/cqr_experiments.md to run experiments using HQE, T5, or fusion.

Example Agent

To run an interactive conversational search agent with ParlAI, simply run chat.py. By default, we use the CAsT 2019 pre-built Pyserini index, but it is possible to specify other indexes using the --from_prebuilt flag. See the file for other possible arguments:

python -m chatty_goose.agents.chat

Alternatively, run the agent using ParlAI's command line interface:

python -m parlai interactive --model chatty_goose.agents.chat:ChattyGooseAgent

We also provide instructions to deploy the agent to Facebook Messenger using ParlAI under examples/messenger.

Comments
  • Add baselines for CAsT 2020

    Add baselines for CAsT 2020

    Need someone help to add CAsT 2020 baseline results:

    • [ ] Naive: CQR without canonical responses
    • [ ] Canonical: CQR with canonical (manual) response

    CQR methods: HQE /Ntr (T5)

    enhancement help wanted 
    opened by justram 2
  • Running HQE and getting the reformulated queries

    Running HQE and getting the reformulated queries

    Dear authors,

    I am trying to use your method in some of my work. For that, I need to get the reformulated queries (instead of only the generated ranked hits).

    I am trying to run the HQE experiment as indicated using:

    python -m experiments.run_retrieval \
          --experiment hqe \
          --hits 1000 \
          --sparse_index cast2019 \
          --qid_queries $input_query_json \
          --output ./output/hqe_bm25 
    

    However, when I print the arguments passed inside the retrieval pipeline (L101 of retrieval_pipeline.py) I get as query the raw/original/last-turn query string, and as manual_context_buffer[turn_id] simply None. If I'm not mistaken, that means that running the specific experiment equals to no reformulation being done at all. Can you check/confirm this?

    Digging more into the code, it seems to me that the queries I'd like to access are inside cqr_queries, but still, it seems to me that context should be empty/None in that case - probably resulting to no reformulation done at all.

    opened by littlewine 1
  • Query rewriting fix

    Query rewriting fix

    Thank you with the project.

    The fix to below will be hits = rp.retrieve(query, manual_context_buffer[turn_id-1] if turn_id!=0 else None), to pass the last previous canonical response.

    https://github.com/castorini/chatty-goose/blob/f9c21c8b7b6194d11d7aec5b4e218174cde98418/experiments/run_retrieval.py#L100

    opened by xeniaqian94 1
  • Update based on Pyserini==0.14.0 and fix canonical response bug

    Update based on Pyserini==0.14.0 and fix canonical response bug

    Main change:

    1. change --dense_index from temporary one to pyserini prebuilt index name
    2. fix canonical response bug, which previously add current response to context
    3. since now we have --dense_index, change option name --index to --sparse_index
    opened by jacklin64 0
  • Add chatty goose support for dense retrieval and hybrid search for T5 and CQE

    Add chatty goose support for dense retrieval and hybrid search for T5 and CQE

    New features added: (only for T5 and CQE, may consider HQE in the future) (1) Dense retrieval (2) Dense-sparse hybrid retrieval

    Some arg might be confused and may be changed in the future: (1) --index, --dense_index: may change to --sparse_index and --dense_index (2) --experiment now has options (hqe,cqe,t5,fusion,cqe_t5_fusion) may change to (hqe,cqe,t5,hqe_t5fusion,cqe_t5_fusion)

    opened by jacklin64 0
  • Add cast2020 baseline

    Add cast2020 baseline

    This PR adds both naive and canonical baselines for CAsT2020 topics. The results are overall lower as compared to CAst2019 and the results from the canonical run are only slightly better for some metrics as compared to results from the naive run.

    Resolves #23

    opened by saileshnankani 0
  • Add support for canonical response

    Add support for canonical response

    This PR adds support for using manual_canonical_result_id in the CAsT2020 data for both ntr and hqe (for #23).

    For ntr, rewrite uses the passage corresponding to the canonical document in the history. We only use 1 passage in the historical context as otherwise, it exceed 512 tokens limit. For e.g., it uses q1/P1/q2 and then q1/q2/P2/q3 and so on.

    enhancement 
    opened by saileshnankani 0
  • CQR Replication

    CQR Replication

    Add CQR replication for Fusion BM25

    Library versions used: torch==1.7.0 torchvision==0.8.1 torchtext==0.8


    Results:

    map                   	all	0.2584
    recall_1000           	all	0.8028
    ndcg_cut_1            	all	0.3353
    ndcg_cut_3            	all	0.3247
    

    Details and reproduction results can be found in the notebook

    opened by saileshnankani 0
  • Rename classes and update messenger bot

    Rename classes and update messenger bot

    Breaking changes:

    Renamed several classes to follow Python conventions / be more consistent

    • chatty_goose.agents.cqragent -> chatty_goose.agents.chat
    • HQE -> Hqe
    • T5_NTR -> Ntr
    • HQESettings -> HqeSettings
    • T5Settings -> NtrSettings
    • CQRType -> CqrType
    • CQRSettings -> CqrSettings
    • CQR -> ConversationalQueryRewriter
    opened by edwinzhng 0
  • document spaCy model dependency

    document spaCy model dependency

    With a fresh install, we get the following error if we try to run anything:

    OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory.
    

    Solution is:

    $ python -m spacy download en_core_web_sm
    

    We should document this.

    opened by lintool 0
  • PyTorch version: needs Torch 1.7 (won't work with 1.8)

    PyTorch version: needs Torch 1.7 (won't work with 1.8)

    With a from-scratch installation, the module pulls in Torch 1.8, which causes this error:

    ImportError: cannot import name 'SAVE_STATE_WARNING' from 'torch.optim.lr_scheduler' (/anaconda3/envs/chatty-goose-test/lib/python3.7/site-packages/torch/optim/lr_scheduler.py)
    

    Downgrading fixes the issue:

    $ pip install torch==1.7.1 torchtext==0.8.1
    

    Should we pin the version in our module dependencies? Or at the very least this needs to be documented.=

    opened by lintool 0
  • dependency conflict

    dependency conflict

    Hi,

    When I install chatty-goose from github using:

    python -m pip install git+https://github.com/castorini/chatty-goose.git
    
    

    I met this issue:

    ERROR: Cannot install chatty-goose and chatty-goose==0.2.0 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        chatty-goose 0.2.0 depends on pyserini==0.14.0
        pygaggle 0.0.3.1 depends on pyserini==0.10.1.0
    

    It seems that chatty-goose requires pyserini==0.14.0 as well as pygaggle 0.0.3.1. However, pygaggle 0.0.3.1 and pyserini==0.14.0 do not play nice with each other

    Could someone provide some help?

    Thanks!

    opened by dayuyang1999 1
  • Expansion to new datasets

    Expansion to new datasets

    Does it make sense to expand Chatty Goose to new datasets? For example:

    • MANtIS - a multi-domain information seeking dialogues dataset: https://guzpenha.github.io/MANtIS/
    • ClariQ - Search-oriented Conversational AI (SCAI) EMNLP https://github.com/aliannejadi/ClariQ
    enhancement 
    opened by lintool 1
  • Checkpoint transformation

    Checkpoint transformation

    According to @edwinzhng's replication log, we have a reranker checkpoint mismatch issue. Currently, we have diffs in our reranking model and the pygaggle's default model.

    Related to this issue: I think we need a folder to put/track our tf2torch ckpt transformation/sanity check scripts?

    opened by justram 0
Releases(0.2.0)
  • 0.2.0(May 7, 2021)

    Breaking changes

    Renamed several classes to follow Python conventions / be more consistent

    chatty_goose.agents.cqragent -> chatty_goose.agents.chat HQE -> Hqe T5_NTR -> Ntr HQESettings -> HqeSettings T5Settings -> NtrSettings CQRType -> CqrType CQRSettings -> CqrSettings CQR -> ConversationalQueryRewriter

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Mar 8, 2021)

    BREAKING CHANGES

    • Integrate ParlAI Facebook Messenger example for a demo by @edwinzhng
    • Integrate Pyserini/Pygaggle for a reference implementation of multi-stage passage retrieval by @edwinzhng
    • Add replication log for TREC CAsT 2019 conversational passage retrieval task by @edwinzhng
    Source code(tar.gz)
    Source code(zip)
Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022