Google Landmark Recogntion and Retrieval 2021 Solutions

Overview

Google Landmark Recogntion and Retrieval 2021 Solutions

In this repository you can find solution and code for Google Landmark Recognition 2021 and Google Landmark Retrieval 2021 competitions (both in top-100).

Brief Summary

My solution is based on the latest modeling from the previous competition and strong post-processing based on re-ranking and using side models like detectors. I used single RTX 3080, EfficientNet B0 and only competition data for training.

Model and loss function

I used the same model and loss as the winner team of the previous competition as a base. Since I had only single RTX 3080, I hadn't enough time to experiment with that and change it. The only things I managed to test is Subcenter ArcMarginProduct as the last block of model and ArcFaceLossAdaptiveMargin loss function, which has been used by the 2nd place team in the previous year. Both those things gave me a signifact score boost (around 4% on CV and 5% on LB).

Setting up the training and validation

Optimizing and scheduling

Optimizer - Ranger (lr=0.003)
Scheduler - CosineAnnealingLR (T_max=12) + 1 epoch Warm-Up

Training stages

I found the best perfomance in training for 15 epochs and 5 stages:

  1. (1-3) - Resize to image size, Horizontal Flip
  2. (4-6) - Resize to bigger image size, Random Crop to image size, Horizontal Flip
  3. (7-9) - Resize to bigger image size, Random Crop to image size, Horizontal Flip, Coarse Dropout with one big square (CutMix)
  4. (10-12) - Resize to bigger image size, Random Crop to image size, Horizontal Flip, FMix, CutMix, MixUp
  5. (13-15) - Resize to bigger image size, Random Crop to image size, Horizontal Flip

I used default Normalization on all the epochs.

Validation scheme

Since I hadn't enough hardware, this became my first competition where I wasn't able to use a K-fold validation, but at least I saw stable CV and CV/LB correlation at the previous competitions, so I used simple stratified train-test split in 0.8, 0.2 ratio. I also oversampled all the samples up to 5 for each class.

Inference and Post-Processing:

  1. Change class to non-landmark if it was predicted more than 20 times .
  2. Using pretrained YoloV5 for detecting non-landmark images. All classes are used, boxes with confidence < 0.5 are dropped. If total area of boxes is greater than total_image_area / 2.7, the sample is marked as non-landmark. I tried to use YoloV5 for cleaning the train dataset as well, but it only decreased a score.
  3. Tuned post-processing from this paper, based on the cosine similarity between train and test images to non-landmark ones.
  4. Higher image size for extracting embeddings on inference.
  5. Also using public train dataset as an external data for extracting embeddings.

Didn't work for me

  • Knowledge Distillation
  • Resnet architectures (on average they were worse than effnets)
  • Adding an external non-landmark class to training from 2019 test dataset
  • Train binary non-landmark classifier

Transfer Learning on the full dataset and Label Smoothing should be useful here, but I didn't have time to test it.

Owner
Vadim Timakin
17 y.o Machine Learning Engineer | Kaggle Competitions Expert | ML/DL/CV | PyTorch
Vadim Timakin
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022