Age Progression/Regression by Conditional Adversarial Autoencoder

Overview

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

TensorFlow implementation of the algorithm in the paper Age Progression/Regression by Conditional Adversarial Autoencoder.

Thanks to the Pytorch implementation by Mattan Serry, Hila Balahsan, and Dor Alt.

Pre-requisites

  • Python 2.7x

  • Scipy 1.0.0

  • TensorFlow (r0.12)

    • Please note that you will get errors if running with TensorFlow r1.0 because the definition of input arguments of some functions have changed, e.g., tf.concat and tf.nn.sigmoid_cross_entropy_with_logits.
  • The code is updated to run with Tensorflow 1.7.0, and an initial model is provided to better initialize the network. The old version is backed up to the folder old_version.

Datasets

Prepare the training dataset

You may use any dataset with labels of age and gender. In this demo, we use the UTKFace dataset. It is better to use aligned and cropped faces. Please save and unzip UTKFace.tar.gz to the folder data.

Training

$ python main.py

The training process has been tested on NVIDIA TITAN X (12GB). The training time for 50 epochs on UTKFace (23,708 images in the size of 128x128x3) is about two and a half hours.

During training, a new folder named save will be created, including four sub-folders: summary, samples, test, and checkpoint.

  • samples saves the reconstructed faces at each epoch.
  • test saves the testing results at each epoch (generated faces at different ages based on input faces).
  • checkpoint saves the model.
  • summary saves the batch-wise losses and intermediate outputs. To visualize the summary,
$ cd save/summary
$ tensorboard --logdir .

After training, you can check the folders samples and test to visualize the reconstruction and testing performance, respectively. The following shows the reconstruction (left) and testing (right) results. The first row in the reconstruction results (left) are testing samples that yield the testing results (right) in the age ascending order from top to bottom.

The reconstruction loss vs. epoch is shown below, which was passed through a low-pass filter for visualization purpose. The original record is saved in folder summary.

Custom Training

$ python main.py
    --dataset		default 'UTKFace'. Please put your own dataset in ./data
    --savedir		default 'save'. Please use a meaningful name, e.g., save_init_model.
    --epoch		default 50.
    --use_trained_model	default True. If use a trained model, savedir specifies the model name. 
    --use_init_model	default True. If load the trained model failed, use the init model save in ./init_model 

Testing

$ python main.py --is_train False --testdir your_image_dir --savedir save

Note: savedir specifies the model name saved in the training. By default, the trained model is saved in the folder save (i.e., the model name). Then, it is supposed to print out the following message.

  	Building graph ...

	Testing Mode

	Loading pre-trained model ...
	SUCCESS ^_^

	Done! Results are saved as save/test/test_as_xxx.png

Specifically, the testing faces will be processed twice, being considered as male and female, respectively. Therefore, the saved files are named test_as_male.png and test_as_female.png, respectively. To achieve better results, it is necessary to train on a large and diverse dataset.

A demo of training process

The first row shows the input faces of different ages, and the other rows show the improvement of the output faces at every other epoch. From top to bottom, the output faces are in the age ascending order.

Files

  • FaceAging.py is a class that builds and initializes the model, and implements training and testing related stuff
  • ops.py consists of functions called FaceAging.py to implement options of convolution, deconvolution, fully connection, leaky ReLU, load and save images.
  • main.py demonstrates FaceAging.py.

Citation

Zhifei Zhang, Yang Song, and Hairong Qi. "Age Progression/Regression by Conditional Adversarial Autoencoder." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

@inproceedings{zhang2017age,
  title={Age Progression/Regression by Conditional Adversarial Autoencoder},
  author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017}
}

Spotlight presentation

Owner
Zhifei Zhang
Zhifei Zhang
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023