HW3 ― GAN, ACGAN and UDA

Overview

HW3 ― GAN, ACGAN and UDA

In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN and ACGAN for generating human face images, and the model of DANN for classifying digit images from different domains.

For more details, please click this link to view the slides of HW3.

Usage

To start working on this assignment, you should clone this repository into your local machine by using the following command.

git clone https://github.com/dlcv-spring-2019/hw3-
   
    .git

   

Note that you should replace with your own GitHub username.

Dataset

In the starter code of this repository, we have provided a shell script for downloading and extracting the dataset for this assignment. For Linux users, simply use the following command.

bash ./get_dataset.sh

The shell script will automatically download the dataset and store the data in a folder called hw3_data. Note that this command by default only works on Linux. If you are using other operating systems, you should download the dataset from this link and unzip the compressed file manually.

⚠️ IMPORTANT NOTE ⚠️
You should keep a copy of the dataset only in your local machine. DO NOT upload the dataset to this remote repository. If you extract the dataset manually, be sure to put them in a folder called hw3_data under the root directory of your local repository so that it will be included in the default .gitignore file.

Evaluation

To evaluate your UDA models in Problems 3 and 4, you can run the evaluation script provided in the starter code by using the following command.

python3 hw3_eval.py $1 $2
  • $1 is the path to your predicted results (e.g. hw3_data/digits/mnistm/test_pred.csv)
  • $2 is the path to the ground truth (e.g. hw3_data/digits/mnistm/test.csv)

Note that for hw3_eval.py to work, your predicted .csv files should have the same format as the ground truth files we provided in the dataset as shown below.

image_name label
00000.png 4
00001.png 3
00002.png 5
... ...

Submission Rules

Deadline

108/05/08 (Wed.) 01:00 AM

Late Submission Policy

You have a five-day delay quota for the whole semester. Once you have exceeded your quota, the credit of any late submission will be deducted by 30% each day.

Note that while it is possible to continue your work in this repository after the deadline, we will by default grade your last commit before the deadline specified above. If you wish to use your quota or submit an earlier version of your repository, please contact the TAs and let them know which commit to grade. For more information, please check out this post.

Academic Honesty

  • Taking any unfair advantages over other class members (or letting anyone do so) is strictly prohibited. Violating university policy would result in an F grade for this course (NOT negotiable).
  • If you refer to some parts of the public code, you are required to specify the references in your report (e.g. URL to GitHub repositories).
  • You are encouraged to discuss homework assignments with your fellow class members, but you must complete the assignment by yourself. TAs will compare the similarity of everyone’s submission. Any form of cheating or plagiarism will not be tolerated and will also result in an F grade for students with such misconduct.

Submission Format

Aside from your own Python scripts and model files, you should make sure that your submission includes at least the following files in the root directory of this repository:

  1. hw3_ .pdf
    The report of your homework assignment. Refer to the "Grading" section in the slides for what you should include in the report. Note that you should replace with your student ID, NOT your GitHub username.
  2. hw3_p1p2.sh
    The shell script file for running your GAN and ACGAN models. This script takes as input a folder and should output two images named fig1_2.jpg and fig2_2.jpg in the given folder.
  3. hw3_p3.sh
    The shell script file for running your DANN model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.
  4. hw3_p4.sh
    The shell script file for running your improved UDA model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.

We will run your code in the following manner:

bash ./hw3_p1p2.sh $1
bash ./hw3_p3.sh $2 $3 $4
bash ./hw3_p4.sh $2 $3 $4
  • $1 is the folder to which you should output your fig1_2.jpg and fig2_2.jpg.
  • $2 is the directory of testing images in the target domain (e.g. hw3_data/digits/mnistm/test).
  • $3 is a string that indicates the name of the target domain, which will be either mnistm, usps or svhn.
    • Note that you should run the model whose target domain corresponds with $3. For example, when $3 is mnistm, you should make your prediction using your "USPS→MNIST-M" model, NOT your "MNIST-M→SVHN" model.
  • $4 is the path to your output prediction file (e.g. hw3_data/digits/mnistm/test_pred.csv).

🆕 NOTE
For the sake of conformity, please use the python3 command to call your .py files in all your shell scripts. Do not use python or other aliases, otherwise your commands may fail in our autograding scripts.

Packages

Below is a list of packages you are allowed to import in this assignment:

python: 3.5+
tensorflow: 1.13
keras: 2.2+
torch: 1.0
h5py: 2.9.0
numpy: 1.16.2
pandas: 0.24.0
torchvision: 0.2.2
cv2, matplotlib, skimage, Pillow, scipy
The Python Standard Library

Note that using packages with different versions will very likely lead to compatibility issues, so make sure that you install the correct version if one is specified above. E-mail or ask the TAs first if you want to import other packages.

Remarks

  • If your model is larger than GitHub’s maximum capacity (100MB), you can upload your model to another cloud service (e.g. Dropbox). However, your shell script files should be able to download the model automatically. For a tutorial on how to do this using Dropbox, please click this link.
  • DO NOT hard code any path in your file or script, and the execution time of your testing code should not exceed an allowed maximum of 10 minutes.
  • If we fail to run your code due to not following the submission rules, you will receive 0 credit for this assignment.

Q&A

If you have any problems related to HW3, you may

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022