Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

Overview

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks

DOI shield_license

Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies. The idea of ensemble learning is to assemble diverse models or multiple predictions and, thus, boost prediction performance. However, it is still an open question to what extend as well as which ensemble learning strategies are beneficial in deep learning based medical image classification pipelines.

In this work, we proposed a reproducible medical image classification pipeline (ensmic) for analyzing the performance impact of the following ensemble learning techniques: Augmenting, Stacking, and Bagging. The pipeline consists of state-of-the-art preprocessing and image augmentation methods as well as 9 deep convolution neural network architectures. It was applied on four popular medical imaging datasets with varying complexity. Furthermore, 12 pooling functions for combining multiple predictions were analyzed, ranging from simple statistical functions like unweighted averaging up to more complex learning-based functions like support vector machines.

theory

We concluded that the integration of Stacking and Augmentation ensemble learning techniques is a powerful method for any medical image classification pipeline to improve robustness and boost performance.

The sampling, results, figures and meta data is available under the following link:
https://doi.org/10.5281/zenodo.5783473


Results

Showcase

Our results revealed that Stacking was able to achieve the largest performance gain of up to 13% F1-score increase. Augmenting showed consistent improvement capabilities by up to 4% and is also appliable to single model based pipelines. Cross-validation based Bagging demonstrated to be the most complex ensemble learning method, which resulted in an F1-score decrease in all analyzed datasets (up to -10%). Furthermore, we demonstrated that simple statistical pooling functions are equal or often even better than more complex pooling functions.

Results

Summary of all experiments to identify performance impact of ensemble learning techniques on medical image classification.
LEFT: Bar plots showing the maximum achieved Accuracy across all methods for each ensemble learning technique and dataset: Baseline (red), Augmenting (blue), Bagging (green) and Stacking (purple). Additionally, the distribution of achieved F1-scores by the various methods is illustrated with box plots.
RIGHT: Computed performance impact between the best scoring method of the Baseline and the best scoring method of the applied ensemble learning technique for each dataset. The performance impact is represented as performance gain in % between F1-scores (RIGHT TOP) as well as Accuracies (RIGHT BOTTOM). The color mapping of the ensemble learning techniques are equal to Figure 7 LEFT (Augmenting: Blue; Bagging: Green; Stacking: Purple).

Reproducibility

Requirements:

  • Ubuntu 18.04
  • Python 3.7
  • NVIDIA QUADRO RTX 6000 or a GPU with equivalent performance

Step-by-Step workflow:

Download ensmic via:

git clone https://github.com/frankkramer-lab/ensmic.git
cd ensmic/

Install ensmic via:

python setup.py install

Run the scripts for the desired phases.
Please check out the following protocol on script execution:
https://github.com/frankkramer-lab/ensmic/blob/master/COMMANDS.md


Datasets

X-Ray COVID19

Classes: 3 - Pneumonia, COVID-19, NORMAL
Size: 2.905 images
Source: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

Short Description:
A team of researchers from Qatar University, Doha, Qatar and the University of Dhaka, Bangladesh along with their collaborators from Pakistan and Malaysia in collaboration with medical doctors have created a database of chest X-ray images for COVID-19 positive cases along with Normal and Viral Pneumonia images. In our current release, there are 219 COVID-19 positive images, 1341 normal images and 1345 viral pneumonia images. We will continue to update this database as soon as we have new x-ray images for COVID-19 pneumonia patients.

Reference:
M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al-Emadi, M.B.I. Reaz, M. T. Islam, “Can AI help in screening Viral and COVID-19 pneumonia?” IEEE Access, Vol. 8, 2020, pp. 132665 - 132676.

The ISIC 2019 Challenge Dataset

Classes: 9 - Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofibroma, Vascular lesion, Squamous cell carcinoma, Unknown
Size: 25.331 images
Source: https://challenge2019.isic-archive.com/ or https://www.kaggle.com/andrewmvd/isic-2019

Short Description:
Skin cancer is the most common cancer globally, with melanoma being the most deadly form. Dermoscopy is a skin imaging modality that has demonstrated improvement for diagnosis of skin cancer compared to unaided visual inspection. However, clinicians should receive adequate training for those improvements to be realized. In order to make expertise more widely available, the International Skin Imaging Collaboration (ISIC) has developed the ISIC Archive, an international repository of dermoscopic images, for both the purposes of clinical training, and for supporting technical research toward automated algorithmic analysis by hosting the ISIC Challenges.

Note:
We didn't use the newest ISIC 2020 (https://challenge2020.isic-archive.com/), because it was purely a binary classification dataset.
We utilized the multi-class 2019 variant in order to obtain a more difficult task for better evaluation of the ensemble learning performance gain.

Reference:
[1] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi.10.1038/sdata.2018.161 (2018)
[2] Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W. Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, Allan Halpern: “Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)”, 2017; arXiv:1710.05006.
[3] Marc Combalia, Noel C. F. Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer Reiter, Allan C. Halpern, Susana Puig, Josep Malvehy: “BCN20000: Dermoscopic Lesions in the Wild”, 2019; arXiv:1908.02288.

Diabetic Retinopathy Detection Dataset

Classes: 5 - "No DR", "Mild", "Moderate", "Severe", "Proliferative DR"
Size: 35.126 images
Source: https://www.kaggle.com/c/diabetic-retinopathy-detection/overview

Short Description:
Diabetic retinopathy is the leading cause of blindness in the working-age population of the developed world. It is estimated to affect over 93 million people. Currently, detecting DR is a time-consuming and manual process that requires a trained clinician to examine and evaluate digital color fundus photographs of the retina. By the time human readers submit their reviews, often a day or two later, the delayed results lead to lost follow up, miscommunication, and delayed treatment. The need for a comprehensive and automated method of DR screening has long been recognized, and previous efforts have made good progress using image classification, pattern recognition, and machine learning. With color fundus photography as input, the goal of this competition is to push an automated detection system to the limit of what is possible – ideally resulting in models with realistic clinical potential. The winning models will be open sourced to maximize the impact such a model can have on improving DR detection.

Reference:
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview

Colorectal Histology MNIST

Classes: 8 - EMPTY, COMPLEX, MUCOSA, DEBRIS, ADIPOSE, STROMA, LYMPHO, TUMOR
Size: 5.000 images
Source: https://www.kaggle.com/kmader/colorectal-histology-mnist

Short Description:
Automatic recognition of different tissue types in histological images is an essential part in the digital pathology toolbox. Texture analysis is commonly used to address this problem; mainly in the context of estimating the tumour/stroma ratio on histological samples. However, although histological images typically contain more than two tissue types, only few studies have addressed the multi-class problem. For colorectal cancer, one of the most prevalent tumour types, there are in fact no published results on multiclass texture separation. The dataset serves as a much more interesting MNIST or CIFAR10 problem for biologists by focusing on histology tiles from patients with colorectal cancer. In particular, the data has 8 different classes of tissue (but Cancer/Not Cancer can also be an interesting problem).

Reference:
Kather JN, Weis CA, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zöllner FG. Multi-class texture analysis in colorectal cancer histology. Sci Rep. 2016 Jun 16;6:27988. doi: 10.1038/srep27988. PMID: 27306927; PMCID: PMC4910082.


Author

Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

How to cite / More information

Coming soon

Coming soon

Thank you for citing our work.

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022