A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

Overview

TaichiSLAM

This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm.

Intro

Taichi is an efficient domain-specific language (DSL) designed for computer graphics (CG), which can be adopted for high-performance computing on mobile devices. Thanks to the connection between CG and robotics, we can adopt this powerful tool to accelerate the development of robotics algorithms.

In this project, I am trying to take advantages of Taichi, including parallel optimization, sparse computing, advanced data structures and CUDA acceleration. The original purpose of this project is to reproduce dense mapping papers, including Octomap, Voxblox, Voxgraph etc.

Note: This project is only backend of 3d dense mapping. For full SLAM features including real-time state estimation, pose graph optimization, depth generation, please take a look on VINS and my fisheye fork of VINS.

Demos

Octomap/Occupy map at different accuacy: drawing drawing drawing

Truncated signed distance function (TSDF): Surface reconstruct by TSDF (not refined) Occupy map and slice of original TSDF

Usage

Install taichi via pip

pip install taichi

Download taichi_three and TaichiSlAM to your dev folder and add them to PYTHONPATH

git clone https://github.com/taichi-dev/taichi_three
git clone https://github.com/xuhao1/TaichiSLAM

echo export PYTHONPATH=`pwd`/taichi_three:`pwd`/TaichiSLAM:\$PYTHONPATH >> ~/.bashrc
#Or if using zshrc
echo export PYTHONPATH=`pwd`/taichi_three:`pwd`/TaichiSLAM:\$PYTHONPATH >> ~/.zshrc

Download cow_and_lady_dataset from voxblox.

Running TaichiSLAM octomap demo

python examples/TaichiSLAM_demo.py -b ~/pathto/your/bag/cow_and_lady_dataset.bag

TSDF(Voxblox)

python examples/TaichiSLAM_demo.py -m esdf -b ~/data/voxblox/cow_and_lady_dataset.bag

Use - and = key to change accuacy. Mouse to rotate the map. -h to get more help.

usage: TaichiSLAM_demo.py [-h] [-r RESOLUTION RESOLUTION] [-m METHOD] [-c] [-t] [--rviz] [-p MAX_DISP_PARTICLES] [-b BAGPATH] [-o OCCUPY_THRES] [-s MAP_SIZE MAP_SIZE] [--blk BLK]
                          [-v VOXEL_SIZE] [-K K] [-f] [--record]

Taichi slam fast demo

optional arguments:
  -h, --help            show this help message and exit
  -r RESOLUTION RESOLUTION, --resolution RESOLUTION RESOLUTION
                        display resolution
  -m METHOD, --method METHOD
                        dense mapping method: octo/esdf
  -c, --cuda            enable cuda acceleration if applicable
  -t, --texture-enabled
                        showing the point cloud's texture
  --rviz                output to rviz
  -p MAX_DISP_PARTICLES, --max-disp-particles MAX_DISP_PARTICLES
                        max output voxels
  -b BAGPATH, --bagpath BAGPATH
                        path of bag
  -o OCCUPY_THRES, --occupy-thres OCCUPY_THRES
                        thresold for occupy
  -s MAP_SIZE MAP_SIZE, --map-size MAP_SIZE MAP_SIZE
                        size of map xy,z in meter
  --blk BLK             block size of esdf, if blk==1; then dense
  -v VOXEL_SIZE, --voxel-size VOXEL_SIZE
                        size of voxel
  -K K                  division each axis of octomap, when K>2, octomap will be K**3-map
  -f, --rendering-final
                        only rendering the final state
  --record              record to C code

Roadmap

Paper Reproduction

  • Octomap
  • Voxblox
  • Voxgraph

Features

Mapping

  • Octotree occupancy map
  • TSDF
  • Incremental ESDF
  • Submap
  • Loop Detection

MISC

  • ROS/RVIZ/rosbag interface
  • 3D occupancy map visuallizer
  • 3D TSDF/ESDF map visuallizer
  • Export to C/C++
  • Benchmark

Know issue

Memory issue on ESDF generation, debugging...

LICENSE

LGPL

Owner
XuHao
PhD student @ HKUST.UAV http://www.xuhao1.me Check my swarm projects on https://github.com/HKUST-Swarm
XuHao
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022