[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Overview

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study

License: MIT

Codes for [Preprint] Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study

Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Introduction

This is the first fair and reproducible benchmark dedicated to assessing the "tricks" of training deep GNNs. We categorize existing approaches, investigate their hyperparameter sensitivity, and unify the basic configuration. Comprehensive evaluations are then conducted on tens of representative graph datasets including the recent large-scale Open Graph Benchmark (OGB), with diverse deep GNN backbones. Based on synergistic studies, we discover the transferable combo of superior training tricks, that lead us to attain the new state-of-the-art results for deep GCNs, across multiple representative graph datasets.

Requirements

Installation with Conda

conda create -n deep_gcn_benchmark
conda activate deep_gcn_benchmark
pip install -r requirements.txt

Our Installation Notes for PyTorch Geometric.

What env configs that we tried that have succeeded: Mac/Linux + cuda driver 11.2 + Torch with cuda 11.1 + torch_geometric/torch sparse/etc with cuda 11.1.

What env configs that we tried but didn't work: Linux+Cuda 11.1/11.0/10.2 + whatever version of Torch.

In the above case when it did work, we adopted the following installation commands, and it automatically downloaded built wheels, and the installation completes within seconds.

In the case when it did not work, the installation appears to be very slow (ten minutes level for torch sparse/torch scatter). Then the installation did not produce any error, while when import torch_geometric in python code, it reports errors of different types.

Installation codes that we adopted on Linux cuda 11.2 that did work:

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-geometric

Project Structure

.
├── Dataloader.py
├── main.py
├── trainer.py
├── models
│   ├── *.py
├── options
│   ├── base_options.py
│   └── configs
│       ├── *.yml
├── tricks
│   ├── tricks
│   │   ├── dropouts.py
│   │   ├── norms.py
│   │   ├── others.py
│   │   └── skipConnections.py
│   └── tricks_comb.py
└── utils.py

How to Use the Benchmark

Train Deep GCN models as your baselines

To train a deep GCN model <model> on dataset <dataset> as your baseline, run:

python main.py --compare_model=1 --cuda_num=0 --type_model=<model> --dataset=<dataset>
# <model>   in  [APPNP, DAGNN, GAT, GCN, GCNII, GPRGNN, JKNet, SGC]
# <dataset> in  [Cora, Citeseer, Pubmed, ogbn-arixv, CoauthorCS, CoauthorPhysics, AmazonComputers, AmazonPhoto, TEXAS, WISCONSIN, CORNELL, ACTOR]

we comprehensively explored the optimal hyperparameters for all models we implemented and train the models under the well-studied hyperparameter settings. For model-specific hyperparameter configs, please refer to options/configs/*.yml

Explore different trick combinations

To explore different trick combinations, we provide a tricks_comb model, which integrates different types of tricks as follows:

dropouts:        DropEdge, DropNode, FastGCN, LADIES
norms:           BatchNorm, PairNorm, NodeNorm, MeanNorm, GroupNorm, CombNorm
skipConnections: Residual, Initial, Jumping, Dense
others:          IdentityMapping

To train a tricks_comb model with specific tricks, run:

python main.py --compare_model=0 --cuda_num=0 --type_trick=<trick_1>+<trick_2>+...+<trick_n> --dataset=<dataset>

, where you can assign type_trick with any number of tricks. For instance, to train a trick_comb model with Initial, EdgeDrop, BatchNorm and IdentityMapping on Cora, run:

python main.py --compare_model=0 --cuda_num=0 --type_trick=Initial+EdgeDrop+BatchNorm+IdentityMapping --dataset=Cora

We provide two backbones --type_model=GCN and --type_tricks=SGC for trick combinations. Specifically, when --type_model=SGC and --type_trick=IdenityMapping co-occur, IdentityMapping has higher priority.

How to Contribute

You are welcome to make any type of contributions. Here we provide a brief guidance to add your own deep GCN models and tricks.

Add your own model

Several simple steps to add your own deep GCN model <DeepGCN>.

  1. Create a python file named <DeepGCN>.py
  2. Implement your own model as a torch.nn.Module, where the class name is recommended to be consistent with your filename <DeepGCN>
  3. Make sure the commonly-used hyperparameters is consistent with ours (listed as follows). To create any new hyperparameter, add it in options/base_options.py.
 --dim_hidden        # hidden dimension
 --num_layers        # number of GCN layers
 --dropout           # rate of dropout for GCN layers
 --lr:               # learning rate
 --weight_decay      # rate of l2 regularization
  1. Register your model in models/__init__.py by add the following codes:
from <DeepGCN> import <DeepGCN>
__all__.append('<DeepGCN>')
  1. You are recommend to use YAML to store your dataset-specific hyperparameter configuration. Create a YAML file <DeepGCN>.yml in options/configs and add the hyperparameters as the following style:
<dataset_1>
  <hyperparameter_1> : value_1
  <hyperparameter_2> : value_2

Now your own model <DeepGCN> should be added successfully into our benchmark framework. To test the performance of <DeepGCN> on <dataset>, run:

python main.py --compare_model=1 --type_model=<DeepGCN> --dataset=<dataset>

Add your own trick

As all implemented tricks are coupled in tricks_comb.py tightly, we do not recommend integrating your own trick to trick_comb to avoid unexpected errors. However, you can use the interfaces we provided in tricks/tricks/ to combine your own trick with ours.

Main Results and Leaderboard

  • Superior performance of our best combo with 32 layers deep GCNs
Model Ranking on Cora Test Accuracy
Ours 85.48
GCNII 85.29
APPNP 83.68
DAGNN 83.39
GPRGNN 83.13
JKNet 73.23
SGC 68.45
Model Ranking on Citeseer Test Accuracy
Ours 73.35
GCNII 73.24
DAGNN 72.59
APPNP 72.13
GPRGNN 71.01
SGC 61.92
JKNet 50.68
Model Ranking on PubMed Test Accuracy
Ours 80.76
DAGNN 80.58
APPNP 80.24
GCNII 79.91
GPRGNN 78.46
SGC 66.61
JKNet 63.77
Model Ranking on OGBN-ArXiv Test Accuracy
Ours 72.70
GCNII 72.60
DAGNN 71.46
GPRGNN 70.18
APPNP 66.94
JKNet 66.31
SGC 34.22
  • Transferability of our best combo with 32 layers deep GCNs
Models Average Ranking on (CS, Physics, Computers, Photo, Texas, Wisconsin, Cornell, Actor)
Ours 1.500
SGC 6.250
DAGNN 4.375
GCNII 3.875
JKNet 4.875
APPNP 4.000
GPRGNN 3.125
  • Takeaways of the best combo

Citation

if you find this repo is helpful, please cite

TBD
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023