A concise but complete implementation of CLIP with various experimental improvements from recent papers

Overview

x-clip (wip)

A concise but complete implementation of CLIP with various experimental improvements from recent papers

Install

$ pip install x-clip

Usage

import torch
from x_clip import CLIP

clip = CLIP(
    dim_text = 512,
    dim_image = 512,
    dim_latent = 512,
    num_text_tokens = 10000,
    text_enc_depth = 6,
    text_seq_len = 256,
    text_heads = 8,
    num_visual_tokens = 512,
    visual_enc_depth = 6,
    visual_image_size = 256,
    visual_patch_size = 32,
    visual_heads = 8,
    use_all_token_embeds = True   # whether to use fine-grained contrastive learning (FILIP)
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)
mask = torch.ones_like(text).bool()

loss = clip(text, images, text_mask = mask, return_loss = True)
loss.backward()

Citations

@misc{radford2021learning,
    title   = {Learning Transferable Visual Models From Natural Language Supervision}, 
    author  = {Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
    year    = {2021},
    eprint  = {2103.00020},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{yao2021filip,
    title   = {FILIP: Fine-grained Interactive Language-Image Pre-Training}, 
    author  = {Lewei Yao and Runhui Huang and Lu Hou and Guansong Lu and Minzhe Niu and Hang Xu and Xiaodan Liang and Zhenguo Li and Xin Jiang and Chunjing Xu},
    year    = {2021},
    eprint  = {2111.07783},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Model forward outputs to text/image similarity score

    Model forward outputs to text/image similarity score

    Any insight on how to take the image/text embeddings (or nominal model forward output) to achieve a simple similarity score as done in the huggingface implementation? HF example here

    In the original paper I see the dot products of the image/text encoder outputs were used, but here I was having troubles with the dimensions on the outputs.

    opened by paulcjh 12
  • Using different encoders in CLIP

    Using different encoders in CLIP

    Hi, I am wondering if it was possible to use different encoders in CLIP ? For images not using vit but resnet for example. And is it possible to replace the text encoder by a features encoder for example ? If I have a vector of features for a given image and I want to use x-clip how should I do that ? I have made a code example that doesnt seems to work, here is what I did:

    import torch
    from x_clip import CLIP
    import torch.nn as nn
    from torchvision import models
    
    class Image_Encoder(torch.nn.Module):
        #output size is (bs,512)
        def __init__(self):
            super(Image_Encoder, self).__init__()
            self.model_pre = models.resnet18(pretrained=False)
            self.base=nn.Sequential(*list(self.model_pre.children()))
            self.base[0]=nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
            self.resnet=self.base[:-1]
    
        def forward(self, x):
            out=self.resnet(x).squeeze()
            return out
    
    
    class features_encoder(torch.nn.Module):
        #output size is (bs,512)
        def __init__(self):
            super(features_encoder, self).__init__()
            self.model =nn.Linear(2048,512)
    
        def forward(self, x):
            out=self.model(x)
            return out
    
    images_encoder=Image_Encoder()
    features_encoder=features_encoder()
    
    clip = CLIP(
        image_encoder = images_encoder,
        text_encoder = features_encoder,
        dim_image = 512,
        dim_text = 512,
        dim_latent = 512
    )
    
    features= torch.randn(4,2048)
    images = torch.randn(4, 3, 256, 256)
    
    loss = clip(features, images, return_loss = True)
    loss.backward()
    

    but I got the following error : forward() takes 2 positional arguments but 3 were given

    Thanks

    opened by ethancohen123 8
  • Visual ssl with channels different than 3

    Visual ssl with channels different than 3

    Hi, seems to be a bug when trying to use visual ssl with a different number of channel than 3 . I think the error came from the visual ssl type ~row 280 here:

    #send a mock image tensor to instantiate parameters self.forward(torch.randn(1, 3, image_size, image_size))

    opened by ethancohen123 4
  • Allow other types of visual  SSL when initiating CLIP

    Allow other types of visual SSL when initiating CLIP

    In the following code as part of CLIP.__init__

            if use_visual_ssl:
                if visual_ssl_type == 'simsiam':
                    ssl_type = SimSiam
                elif visual_ssl_type == 'simclr':
                    ssl_type = partial(SimCLR, temperature = simclr_temperature)
                else:
                    raise ValueError(f'unknown visual_ssl_type')
    
                self.visual_ssl = ssl_type(
                    self.visual_transformer,
                    image_size = visual_image_size,
                    hidden_layer = visual_ssl_hidden_layer
                )
    

    the visual self-supervised learning is hardcoded. I would suggest changing this to accept the visual SSL module as an argument when instantiating CLIP to allow flexibility in the same manner as it does for the image encoder and text encoder.

    Example:

    barlow = BarlowTwins(augmentatation_fns)
    clip = CLIP(..., visual_ssl=barlow)
    
    opened by Froskekongen 4
  • Extract Text and Image Latents

    Extract Text and Image Latents

    Hi, in the current implementation we can only extract text and image embedding (by set return_encodings=True) which are obtained before applying latent linear layers. Isn't it better to add an option to extract latent embeddings? Another importance of this is that with the current code, it is impossible to extract the similarity matrix between a batch of images and a batch of text.

    opened by mmsamiei 2
  • NaN with mock data

    NaN with mock data

    Hi lucidrains,

    Try this and it will NaN within 100 steps (latest Github code). The loss looks fine before NaN.

    import torch
    torch.backends.cudnn.allow_tf32 = True
    torch.backends.cuda.matmul.allow_tf32 = True    
    torch.backends.cudnn.benchmark = True
    
    import random
    import numpy as np
    seed = 42
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    
    num_text_tokens = 10000
    batch_sz = 12
    text_seq_len = 256
    visual_image_size = 256
    
    # mock data
    
    data_sz = 1000
    all_text = torch.randint(0, num_text_tokens, (data_sz, text_seq_len)).cuda()
    all_images = torch.randn(data_sz, 3, visual_image_size, visual_image_size).cuda()
    
    text = torch.zeros((batch_sz, text_seq_len), dtype=torch.long).cuda()
    images = torch.zeros((batch_sz, 3, visual_image_size, visual_image_size)).cuda()
    
    ##########################################################################################
    
    import wandb
    import datetime
    wandb.init(project="Test", name=datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S'), save_code=False)
    
    from x_clip import CLIP
    
    clip = CLIP(
        dim_text = 512,
        dim_image = 512,
        dim_latent = 512,
        num_text_tokens = num_text_tokens,
        text_enc_depth = 6,
        text_seq_len = text_seq_len,
        text_heads = 8,
        visual_enc_depth = 6,
        visual_image_size = visual_image_size,
        visual_patch_size = 32,
        visual_heads = 8,
        use_all_token_embeds = False,           # whether to use fine-grained contrastive learning (FILIP)
        decoupled_contrastive_learning = True,  # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
        extra_latent_projection = True,         # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
        use_visual_ssl = True,                  # whether to do self supervised learning on iages
        visual_ssl_type = 'simclr',             # can be either 'simclr' or 'simsiam', depending on using DeCLIP or SLIP
        use_mlm = False,                        # use masked language learning (MLM) on text (DeCLIP)
        text_ssl_loss_weight = 0.05,            # weight for text MLM loss
        image_ssl_loss_weight = 0.05            # weight for image self-supervised learning loss
    ).cuda()
    
    optimizer = torch.optim.Adam(clip.parameters(), lr=1e-4, betas=(0.9, 0.99))
    
    for step in range(999999):
        for i in range(batch_sz):
            data_id = random.randrange(0, data_sz - 1)
            text[i] = all_text[data_id]
            images[i] = all_images[data_id]
    
        loss = clip(
            text,
            images,
            freeze_image_encoder = False,   # whether to freeze image encoder if using a pretrained image net, proposed by LiT paper
            return_loss = True              # needs to be set to True to return contrastive loss
        )
        clip.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(clip.parameters(), 1.0)
        optimizer.step()
    
        now_loss = loss.item()
        wandb.log({"loss": now_loss}, step = step)
        print(step, now_loss)
    
        if 'nan' in str(now_loss):
            break
    
    opened by BlinkDL 1
  • Unable to train to convergence (small dataset)

    Unable to train to convergence (small dataset)

    Hi nice work with x-clip. Hoping to play around with it and eventually combine it into your DALLE2 work.

    Currently having some trouble training on roughly 30k image-text pairs. Loss eventually goes negative and starts producing Nan's. I've dropped learning rate down (1e-4) and I'm clipping gradients (max_norm=0.5).

    Any thoughts on what are sane training params/configs on such a small dataset using x-clip?

    opened by jacobwjs 9
Releases(0.12.0)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022