[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

Related tags

Deep LearningMosaicKD
Overview

MosaicKD

Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data"

1. Motivation

Natural images share common local patterns. In MosaicKD, these local patterns are first dissembled from OOD data and then assembled to synthesize in-domain data, making OOD-KD feasible.

2. Method

MosaicKD establishes a four-player minimax game between a generator G, a patch discriminator D, a teacher model T and a student model S. The generator, as those in prior GANs, takes as input a random noise vector and learns to mosaic synthetic in-domain samples with locally-authentic and globally-legitimate distributions, under the supervisions back-propagated from the other three players.

3. Reproducing our results

3.1 Prepare teachers

Please download our pre-trained models from Dropbox (266 M) and extract them as "checkpoints/pretrained/*.pth". You can also train your own models as follows:

python train_scratch.py --lr 0.1 --batch-size 256 --model wrn40_2 --dataset cifar100

3.2 OOD-KD: CIFAR-100 (ID) + CIFAR10 (OOD)

  • Vanilla KD (Blind KD)

    python kd_vanilla.py --lr 0.1 --batch-size 128 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --gpu 0 
  • Data-Free KD (DFQAD)

    python kd_datafree.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0
  • MosaicKD (This work)

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0

3.3 OOD-KD: CIFAR-100 (ID) + ImageNet/Places365 OOD Subset (OOD)

  • Prepare 32x32 datasets
    Please prepare the 32x32 ImageNet following the instructions from https://patrykchrabaszcz.github.io/Imagenet32/ and extract them as "data/ImageNet_32x32/train" and "data/ImageNet_32x32/val". You can prepare Places365 in the same way.

  • MosaicKD on OOD subset
    As ImageNet & Places365 contain a large number of in-domain samples, we construct OOD subset for training. Please run the scripts with ''--ood_subset'' to enable subset selection.

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --ood_subset --gpu 0

4. Visualization of synthetic data

5. Citation

If you found this work useful for your research, please cite our paper:

@article{fang2021mosaicking,
  title={Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data},
  author={Gongfan Fang and Yifan Bao and Jie Song and Xinchao Wang and Donglin Xie and Chengchao Shen and Mingli Song},
  journal={arXiv preprint arXiv:2110.15094},
  year={2021}
}
Owner
ZJU-VIPA
Laboratory of Visual Intelligence and Pattern Analysis
ZJU-VIPA
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022