One Million Scenes for Autonomous Driving

Overview

ONCE Benchmark

This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset.

The code is mainly based on OpenPCDet.

Introduction

We provide the dataset API and some reproduced models on the ONCE dataset.

Installation

The repo is based on OpenPCDet. If you have already installed OpenPCDet (version >= v0.3.0), you can skip this part and use the existing environment, but remember to re-compile CUDA operators by

python setup.py develop
cd pcdet/ops/dcn
python setup.py develop

If you haven't installed OpenPCDet, please refer to INSTALL.md for the installation.

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Benchmark

Please refer to this page for detailed benchmark results. We cannot release the training checkpoints, but it's easy to reproduce the results with provided configurations.

Detection Models

We provide 1 fusion-based and 5 point cloud based 3D detectors. The training configurations are at tools/cfgs/once_models/sup_models/*.yaml

For PointPainting, you have to first produce segmentation results yourself. We used HRNet trained on CityScapes to generate segmentation masks.

Reproduced results on the validation split (trained on the training split):

Method Vehicle Pedestrian Cyclist mAP
PointRCNN 52.09 4.28 29.84 28.74
PointPillars 68.57 17.63 46.81 44.34
SECOND 71.19 26.44 58.04 51.89
PV-RCNN 77.77 23.50 59.37 53.55
CenterPoints 66.79 49.90 63.45 60.05
PointPainting 66.17 44.84 62.34 57.78

Semi-supervised Learning

We provide 5 semi-supervised methods based on the SECOND detector. The training configurations are at tools/cfgs/once_models/semi_learning_models/*.yaml

It is worth noting that all the methods are implemented by ourselves, and some are modified to attain better performance. Thus our implementations may be quite different from the original versions.

Reproduced results on the validation split (semi-supervised learning on the 100k raw_small subset):

Method Vehicle Pedestrian Cyclist mAP
baseline (SECOND) 71.19 26.44 58.04 51.89
Pseudo Label 72.80 25.50 55.37 51.22
Noisy Student 73.69 28.81 54.67 52.39
Mean Teacher 74.46 30.54 61.02 55.34
SESS 73.33 27.31 59.52 53.39
3DIoUMatch 73.81 30.86 56.77 53.81

Unsupervised Domain Adaptation

This part of the codes is based on ST3D. Please copy the configurations at tools/cfgs/once_models/uda_models/* and tools/cfgs/dataset_configs/da_once_dataset.yaml, as well as the dataset file pcdet/datasets/once/once_target_dataset.py to the ST3D repo. The results can be easily reproduced following their instructions.

Task Waymo_to_ONCE nuScenes_to_ONCE ONCE_to_KITTI
Method AP_BEV/AP_3D AP_BEV/AP_3D AP_BEV/AP_3D
Source Only 65.55/32.88 46.85/23.74 42.01/12.11
SN 67.97/38.25 62.47/29.53 48.12/21.12
ST3D 68.05/48.34 42.53/17.52 86.89/41.42
Oracle 89.00/77.50 89.00/77.50 83.29/73.45

Citation

If you find this project useful in your research, please consider cite:

@article{mao2021one,
  title={One Million Scenes for Autonomous Driving: ONCE Dataset},
  author={Mao, Jiageng and Niu, Minzhe and Jiang, Chenhan and Liang, Hanxue and Liang, Xiaodan and Li, Yamin and Ye, Chaoqiang and Zhang, Wei and Li, Zhenguo and Yu, Jie and others},
  journal={arXiv preprint arXiv:2106.11037},
  year={2021}
}
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022