Cross-Document Coreference Resolution

Related tags

Deep Learningcoref
Overview

Cross-Document Coreference Resolution

This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in our papers:

The models are trained on ECB+, but they can be used for any setting of multiple documents.

Getting started

  • Install python3 requirements pip install -r requirements.txt

Extract mentions and raw text from ECB+

Run the following script in order to extract the data from ECB+ dataset and build the gold conll files. The ECB+ corpus can be downloaded here.

python get_ecb_data.py --data_path path_to_data

Training Instructions

The core of our model is the pairwise scorer between two spans, which indicates how likely two spans belong to the same cluster.

Training method

We present 3 ways to train this pairwise scorer:

  1. Pipeline: first train a span scorer, then train the pairwise scorer using the same spans at each epoch.
  2. Continue: pre-train the span scorer, then train the pairwise scorer while keep training the span scorer.
  3. End-to-end: train together both models from scratch.

In order to choose the training method, you need to set the value of the training_method in the config_pairwise.json to pipeline, continue or e2e. In our paper, we found the continue method to perform the best for event coreference and we apply it for entity and ALL as well.

What are the labels ?

In ECB+, the entity and event coreference clusters are annotated separately, making it possible to train a model only on event or entity coreference. Therefore, our model also allows to be trained on events, entity, or both. You need to set the value of the mention_type in the config_pairwise.json (and config_span_scorer.json) to events, entities or mixed (corresponding to ALL in the paper).

Running the model

In both pipeline and continue methods, you need to first run the span scorer model

python train_span_scorer --config configs/config_span_scorer.json

For the pairwise scorer, run the following script

python train_pairwise_scorer --config configs/config_pairwise.json

Some important parameters in config_pairwise.json:

  • max_mention_span
  • top_k: pruning coefficient
  • training_method: (pipeline, continue, e2e)
  • subtopic: (true, false) whether to train at the topic or subtopic level (ECB+ notions).

Tuning threshold for agglomerative clustering

The training above will save 10 models (one for each epoch) in the specified directory, while each model is composed of a span_repr, a span scorer and a pairwise scorer. In order to find the best model and the best threshold for the agglomerative clustering, you need to do an hyperparameter search on the 10 models + several values for threshold, evaluated on the dev set. To do that, please set the config_clustering.json (split: dev) and run the two following scripts:

python tuned_threshold.py --config configs/config_clustering.json

python run_scorer.py [path_of_directory_of_conll_files] [mention_type]

Prediction

Given the trained pairwise scorer, the best model_num and the threshold from the above training and tuning, set the config_clustering.json (split: test) and run the following script.

python predict.py --config configs/config_clustering

(model_path corresponds to the directory in which you've stored the trained models)

An important configuration in the config_clustering is the topic_level. If you set false , you need to provide the path to the predicted topics in predicted_topics_path to produce conll files at the corpus level.

Evaluation

The output of the predict.py script is a file in the standard conll format. Then, it's straightforward to evaluate it with its corresponding gold conll file (created in the first step), using the official conll coreference scorer that you can find here or the coval system (python implementation).

Make sure to use the gold files of the same evaluation level (topic or corpus) as the predictions.

Notes

  • If you chose to train the pairwise with the end-to-end method, you don't need to provide a span_repr_path or a span_scorer_path in the config_pairwise.json.

  • If you use this model with gold mentions, the span scorer is not relevant, you should ignore the training method.

  • If you're interested in a newer but heavier model, check out our cross-encoder model

Team

Owner
Arie Cattan
PhD candidate, Computer Science, Bar-Ilan University
Arie Cattan
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022