:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

Overview

bulbea

"Deep Learning based Python Library for Stock Market Prediction and Modelling."

Gitter Documentation Status

Table of Contents

Installation

Clone the git repository:

$ git clone https://github.com/achillesrasquinha/bulbea.git && cd bulbea

Install necessary dependencies

$ pip install -r requirements.txt

Go ahead and install as follows:

$ python setup.py install

You may have to install TensorFlow:

$ pip install tensorflow     # CPU
$ pip install tensorflow-gpu # GPU - Requires CUDA, CuDNN

Usage

1. Prediction

a. Loading

Create a share object.

>>> import bulbea as bb
>>> share = bb.Share('YAHOO', 'GOOGL')
>>> share.data
# Open        High         Low       Close      Volume  \
# Date                                                                     
# 2004-08-19   99.999999  104.059999   95.959998  100.339998  44659000.0   
# 2004-08-20  101.010005  109.079998  100.500002  108.310002  22834300.0   
# 2004-08-23  110.750003  113.479998  109.049999  109.399998  18256100.0   
# 2004-08-24  111.239999  111.599998  103.570003  104.870002  15247300.0   
# 2004-08-25  104.960000  108.000002  103.880003  106.000005   9188600.0
...
b. Preprocessing

Split your data set into training and testing sets.

>>> from bulbea.learn.evaluation import split
>>> Xtrain, Xtest, ytrain, ytest = split(share, 'Close', normalize = True)
c. Modelling
>>> import numpy as np
>>> Xtrain = np.reshape(Xtrain, (Xtrain.shape[0], Xtrain.shape[1], 1))
>>> Xtest  = np.reshape( Xtest, ( Xtest.shape[0],  Xtest.shape[1], 1))

>>> from bulbea.learn.models import RNN
>>> rnn = RNN([1, 100, 100, 1]) # number of neurons in each layer
>>> rnn.fit(Xtrain, ytrain)
# Epoch 1/10
# 1877/1877 [==============================] - 6s - loss: 0.0039
# Epoch 2/10
# 1877/1877 [==============================] - 6s - loss: 0.0019
...
d. Testing
>>> from sklearn.metrics import mean_squared_error
>>> p = rnn.predict(Xtest)
>>> mean_squared_error(ytest, p)
0.00042927869370525931
>>> import matplotlib.pyplot as pplt
>>> pplt.plot(ytest)
>>> pplt.plot(p)
>>> pplt.show()

2. Sentiment Analysis

Add your Twitter credentials to your environment variables.

export BULBEA_TWITTER_API_KEY="<YOUR_TWITTER_API_KEY>"
export BULBEA_TWITTER_API_SECRET="<YOUR_TWITTER_API_SECRET>"

export BULBEA_TWITTER_ACCESS_TOKEN="<YOUR_TWITTER_ACCESS_TOKEN>"
export BULBEA_TWITTER_ACCESS_TOKEN_SECRET="<YOUR_TWITTER_ACCESS_TOKEN_SECRET>"

And then,

>>> bb.sentiment(share)
0.07580128205128206

Documentation

Detailed documentation is available here.

Dependencies

  1. quandl
  2. keras
  3. tweepy
  4. textblob

License

This code has been released under the Apache 2.0 License.

Owner
Achilles Rasquinha
I write code that automates my job.
Achilles Rasquinha
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022