Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Overview

codecov

Movement Primitives

Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This repository focuses mainly on imitation learning, generalization, and adaptation of movement primitives. It provides implementations in Python and Cython.

Features

  • Dynamical Movement Primitives (DMPs) for
    • positions (with fast Runge-Kutta integration)
    • Cartesian position and orientation (with fast Cython implementation)
    • Dual Cartesian position and orientation (with fast Cython implementation)
  • Coupling terms for synchronization of position and/or orientation of dual Cartesian DMPs
  • Propagation of DMP weight distribution to state space distribution
  • Probabilistic Movement Primitives (ProMPs)

API Documentation

The API documentation is available here.

Install Library

This library requires Python 3.6 or later and pip is recommended for the installation. In the following instructions, we assume that the command python refers to Python 3. If you use the system's Python version, you might have to add the flag --user to any installation command.

I recommend to install the library via pip in editable mode:

python -m pip install -e .[all]

If you don't want to have all dependencies installed, just omit [all]. Alternatively, you can install dependencies with

python -m pip install -r requirements.txt

You could also just build the Cython extension with

python setup.py build_ext --inplace

or install the library with

python setup.py install

Non-public Extensions

Note that scripts from the subfolder examples/external_dependencies/ require access to git repositories (URDF files or optional dependencies) that are not publicly available.

MoCap Library

# untested: pip install git+https://git.hb.dfki.de/dfki-interaction/mocap.git
git clone [email protected]:dfki-interaction/mocap.git
cd mocap
python -m pip install -e .
cd ..

Get URDFs

# RH5
git clone [email protected]:models-robots/rh5_models/pybullet-only-arms-urdf.git --recursive
# RH5v2
git clone [email protected]:models-robots/rh5v2_models/pybullet-urdf.git --recursive
# Kuka
git clone [email protected]:models-robots/kuka_lbr.git
# Solar panel
git clone [email protected]:models-objects/solar_panels.git
# RH5 Gripper
git clone [email protected]:motto/abstract-urdf-gripper.git --recursive

Data

I assume that your data is located in the folder data/ in most scripts. You should put a symlink there to point to your actual data folder.

Build API Documentation

You can build an API documentation with pdoc3. You can install pdoc3 with

pip install pdoc3

... and build the documentation from the main folder with

pdoc movement_primitives --html

It will be located at html/movement_primitives/index.html.

Test

To run the tests some python libraries are required:

python -m pip install -e .[test]

The tests are located in the folder test/ and can be executed with: python -m nose test

This command searches for all files with test and executes the functions with test_*.

Contributing

To add new features, documentation, or fix bugs you can open a pull request. Directly pushing to the main branch is not allowed.

Examples

Conditional ProMPs

Probabilistic Movement Primitives (ProMPs) define distributions over trajectories that can be conditioned on viapoints. In this example, we plot the resulting posterior distribution after conditioning on varying start positions.

Script

Potential Field of 2D DMP

A Dynamical Movement Primitive defines a potential field that superimposes several components: transformation system (goal-directed movement), forcing term (learned shape), and coupling terms (e.g., obstacle avoidance).

Script

DMP with Final Velocity

Not all DMPs allow a final velocity > 0. In this case we analyze the effect of changing final velocities in an appropriate variation of the DMP formulation that allows to set the final velocity.

Script

ProMPs

The LASA Handwriting dataset learned with ProMPs. The dataset consists of 2D handwriting motions. The first and third column of the plot represent demonstrations and the second and fourth column show the imitated ProMPs with 1-sigma interval.

Script

Contextual ProMPs

We use a dataset of Mronga and Kirchner (2021) with 10 demonstrations per 3 different panel widths that were obtained through kinesthetic teaching. The panel width is considered to be the context over which we generalize with contextual ProMPs. Each color in the above visualizations corresponds to a ProMP for a different context.

Script

Dependencies that are not publicly available:

Dual Cartesian DMP

We offer specific dual Cartesian DMPs to control dual-arm robotic systems like humanoid robots.

Scripts: Open3D, PyBullet

Dependencies that are not publicly available:

Coupled Dual Cartesian DMP

We can introduce a coupling term in a dual Cartesian DMP to constrain the relative position, orientation, or pose of two end-effectors of a dual-arm robot.

Scripts: Open3D, PyBullet

Dependencies that are not publicly available:

Propagation of DMP Distribution to State Space

If we have a distribution over DMP parameters, we can propagate them to state space through an unscented transform.

Script

Dependencies that are not publicly available:

Funding

This library has been developed initially at the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI GmbH) in Bremen. At this phase the work was supported through a grant of the German Federal Ministry of Economic Affairs and Energy (BMWi, FKZ 50 RA 1701).

You might also like...
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Implementation of CVPR 2021 paper
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

Toward Spatially Unbiased Generative Models (ICCV 2021)
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Comments
  • Modify the initial method of T in dmp_open_loop_quaternion() to avoid numerical rounding errors

    Modify the initial method of T in dmp_open_loop_quaternion() to avoid numerical rounding errors

    the origin initial method about T in dmp_open_loop_quaternion() is:T = [start_t]; while t <run_t: last_t=t, t+=dt,T.append(t), which will cause the numerical rounding errors when run_t = 2.99. In detail: when t = 2.07, t+= dt t should be 2.08, but is the real scene, it will become 2.0799999999. And it will cause the length of Yr becomes 301. In the End, I am greenhand about Github, I am sorry if I do something wrong operation about repo.

    opened by CodingCatMountain 5
  • A Problem about CartesianDMP due to the parameter 'dt'...

    A Problem about CartesianDMP due to the parameter 'dt'...

    Hi, this package is very very very good, it do really help me to learn about the Learn from Demonstrations. But last night, I find a problem about open_loop, which is function included in the CartesianDMP class. The problem is the length about the python list, which named Yr in this function. And I have checked the source code, I found : My Y, which is passed to cartesian_dmp.imitate(T,Y), it's length is 600; And Yp in CartesianDMP.open_loop(), which returned by dmp_open_loop, it's length is 600, which are correct, but the length Yr in CartesianDMP.open_loop() is 601. I believe the relationship about T and dt in dmp_open_loop() and dmp_open_loop_quaternion() has some problem. Please Check! The T in dmp_open_loop() is initialized via this way : T=np.arange(start_t, run_t + dt, dt) , and the T in dmp_open_loop_quaternion() is initialized via this way: T=[start_t], which start_t is 0.0, and in a loop , last_t = t, t+=dt, T.append(t).

    opened by CodingCatMountain 4
  • CartesianDMP object has no attribute forcing_term

    CartesianDMP object has no attribute forcing_term

    I would like to save the weights of a trained CartesianDMP. There is no overloaded function get_weights() so I guess the one from the DMP base class should work. However, when calling it it raises the error in the title:

    AttributeError: 'CartesianDMP' object has no attribute 'forcing_term'
    

    Do you know what could be the issue here? Thanks in advance.

    opened by buschbapti 3
  • Can this repo for the periodic motion and orientation?

    Can this repo for the periodic motion and orientation?

    Thanks for sharing. Though DMPs are widely used to encode point-to-point movements, implementing the periodic DMP for translation and orientation is still challenging. Can this repository achieve these? If possible, would you provide any examples?

    opened by HongminWu 1
Releases(0.5.0)
Owner
DFKI Robotics Innovation Center
Research group at the German Research Center for Artificial Intelligence. For a list of our other open source contributuions click the link below:
DFKI Robotics Innovation Center
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022