Face Recognition Attendance Project

Overview

Face-Recognition-Attendance-Project

In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, This is My First Project on GitHub,

Step 1: Install PyCharm IDE Step 2: Install Visual Studio 2019 or 2010 for dlib librairy or Package While installing Visual Studio Select Desktop Development With C++ (else it will not work ) Desktop Development with c++ Images

Step 3: i) Open PyCharm and Install The Following Packages 1. cmake 2. face_recognition 3. Numpy 4. datetime 5. dlib ii) You can install using command or manually 1) Using Command i) open python terminal in PyCharm type: 1. pip install camke 2. pip install face_recognition 3. pip install numpy 4. pip install datetime 5. pip install dlib ii) install packages manually 1) click on File 2) Go to Settings 3) Click on Project: Your Project Name will show there 4) Click on Python Interpreter 5) Click on + simbol and search and install 6) click on ok iii) Select Python Interpreters

Step 4: i) clone the github repository or download the zip file and extract it in your file. 1. For Clone Command: git clone https://github.com/Gautamcodes24/Face-Recognition-Attendance-Project.git ii) open Face_Recogination_Attendance.py file and Run. here you go. Congrats you have done!

Note: 1. Put all file in one folder 2. Put that images in basic_images folder which you want to trend, our program automatically will detect and it will trend. 3. if you are getting any error, contact me on Insta: @GautamCodes24 4. while runing program close .csv file otherwise it will give errors. 5. main.py is basic example of image proprocessing or image compare. 6. Mainly you have to run only one file : Face_Recogination_Attendance.py entire code is there,

Owner
Gautam Kumar
i m a software developer
Gautam Kumar
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using πŸ€— transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using πŸ€— transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview β€’ Installation β€’ How to use β€’ Benchmark

Xingdong Zuo 12 Dec 02, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet δΈ­ζ–‡η‰ˆ Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022