Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

Overview

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

This is the code for the paper:

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, Li Fei-Fei
Presented at ICML 2018

Please note that this is not an officially supported Google product.

If you find this code useful in your research then please cite

@inproceedings{jiang2018mentornet,
  title={MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels},
  author={Jiang, Lu and Zhou, Zhengyuan and Leung, Thomas and Li, Li-Jia and Fei-Fei, Li},
  booktitle={ICML},
  year={2018}
}

Introduction

We are interested in training a deep network using curriculum learning (Bengio et al., 2009), i.e. learning examples with focus. Each curriculum is implemented as a network (called MentorNet).

  • During training, MentorNet supervises the training of the base network (called StudentNet).
  • At the test time, StudentNet makes prediction alone without MentorNet.

Training Overview

Setups

All code was developed and tested on Nvidia V100/P100 (16GB) the following environment.

  • Ubuntu 18.04
  • Python 2.7.15
  • TensorFlow 1.8.0
  • numpy 1.13.3
  • imageio 2.3.0

Download Cloud SDK to get data and models. Next we need to download the dataset and pre-trained MentorNet models. Put them into the same directory as the code directory.

gsutil -m cp -r gs://mentornet_project/data .
gsutil -m cp -r gs://mentornet_project/mentornet_models .

Alternatively, you may download the zip files: data and models.

Running MentorNet on CIFAR

export PYTHONPATH="$PYTHONPATH:$PWD/code/"

python code/cifar_train_mentornet.py \
  --dataset_name=cifar10   \
  --trained_mentornet_dir=mentornet_models/models/mentornet_pd1_g_1/mentornet_pd \
  --loss_p_precentile=0.75  \
  --nofixed_epoch_after_burn_in  \
  --burn_in_epoch=0  \
  --example_dropout_rates="0.5,17,0.05,83" \
  --data_dir=data/cifar10/0.2 \
  --train_log_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1/train \
  --studentnet=resnet101 \
  --max_number_of_steps=39000

A full list of commands can be found in this file. The training script has a number of command-line flags that you can use to configure the model architecture, hyperparameters, and input / output settings:

  • --trained_mentornet_dir: Directory where to find the trained MentorNet model, created by mentornet_learning/train.py.
  • --loss_p_percentile: p-percentile used to compute the loss moving average. Default is 0.7.
  • --burn_in_epoch: Number of first epochs to perform burn-in. In the burn-in period, every sample has a fixed 1.0 weight. Default is 0.
  • --fixed_epoch_after_burn_in: Whether to use the fixed epoch as the MentorNet input feature after the burn-in period. Set True for MentorNet DD. Default is False.
  • --loss_moving_average_decay: Decay factor used in moving average. Default is 0.5.
  • --example_dropout_rates: Comma-separated list indicating the example drop-out rate for the total of 100 epochs. The format is [dropout rate, epoch_num]+, the piecewise drop-out rate from boundaries and values. The sum of epoch_num is 100. Drop-out means the probability of setting sample weights to zeros proposed (Liang et al., 2016). Default is 0.5, 17, 0.05, 78, 1.0, 5.

To evaluate a model, run the evaluation job in parallel with the training job (on a different GPU).

python cifar/cifar_eval.py \
 --dataset_name=cifar10 \
 --data_dir=cifar/data/cifar10/val/ \
 --checkpoint_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1/train \
 --eval_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1//eval_val \
 --studentnet=resnet101 \
 --device_id=1

A complete list of commands of running experiments can be found at commands/train_studentnet_resnet.sh and commands/train_studentnet_inception.sh.

MentorNet Framework

MentorNet is a general framework for curriculum learning, where various curriculums can be learned by the same MentorNet structure of different parameters.

It is flexible as we can switch curriculums by attaching different MentorNets without modifying the pipeline.

We train a few MentorNets listed below. We can think of a MentorNet as a hyper-parameter and will be tuned for different problems.

Curriculum Visualization Intuition Model Name
No curriculum image Assign uniform weight to every sample uniform. baseline_mentornet
Self-paced
(Kuma et al. 2010)
image Favor samples of smaller loss. self_paced_mentornet
SPCL linear
(Jiang et al. 2015)
image Discount the weight by loss linearly. spcl_linear_mentornet
Hard example mining
(Felzenszwalb et al., 2008)
image Favor samples of greater loss. hard_example_mining_mentornet
Focal loss
(Lin et al., 2017)
image Increase the weight by loss by the exponential CDF. focal_loss_mentornet
Predefined Mixture image Mixture of SPL and SPCL changing by epoch. mentornet_pd
MentorNet Data-driven image Learned on a small subset of the CIFAR data. mentornet_dd

Note there are many more curriculums can be trained by MentorNet, for example, prediction variance (Chang et al., 2017), implicit regularizer (Fan et al. 2017), self-paced with diversity (Jiang et al. 2014), sample re-weighting (Dehghani et al., 2018, Ren et al., 2018), etc.

Performance

The numbers are slightly different from the ones reported in the paper due to the re-implementation on the third party library.

CIFAR-10 ResNet

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.796 0.822 0.797 0.910 0.914
0.4 0.568 0.802 0.634 0.776 0.887
0.8 0.238 0.297 0.25 0.283 0.463

CIFAR-100 ResNet

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.624 0.652 0.613 0.733 0.726
0.4 0.448 0.509 0.467 0.567 0.675
0.8 0.084 0.089 0.079 0.193 0.301

CIFAR-10 Inception

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.775 0.784 0.747 0.798 0.800
0.4 0.72 0.733 0.695 0.731 0.763
0.8 0.29 0.272 0.309 0.312 0.461

CIFAR-100 Inception

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.42 0.408 0.391 0.451 0.466
0.4 0.346 0.32 0.313 0.386 0.411
0.8 0.108 0.091 0.107 0.125 0.203

Algorithm

We propose an algorithm to optimize the StudentNet model parameter w jointly with a

given MentorNet. Unlike the alternating minimization, it minimizes w (StudentNet parameter) and v (sample weight) stochastically over mini-batches.

The curriculum can change during training, and MentorNet is updated a few times in the algorithm.

Algorithm

To learn new curriculums (Step 6), see this page.

We found specific MentorNet architectures do not matter that much.

References

  • Bengio, Yoshua, et al. "Curriculum learning". In ICML, 2009.
  • Kumar M. Pawan, Packer Benjamin, and Koller Daphne "Self-paced learning for latent variable models". In NIPS, 2010.
  • Jiang, Lu et al. "Self-paced Learning with Diversity", In NIPS 2014
  • Jiang, Lu, et al. "Self-Paced Curriculum Learning." In AAAI. 2015.
  • Liang, Junwei et al. Learning to Detect Concepts from Webly-Labeled Video Data, In IJCAI 2016.
  • Lin, Tsung-Yi, et al. "Focal loss for dense object detection." In ICCV. 2017.
  • Fan, Yanbo, et al. "Self-Paced Learning: an Implicit Regularization Perspective." In AAAI 2017.
  • Felzenszwalb, Pedro, et al. "A discriminatively trained, multiscale, deformable part model." In CVPR 2008.
  • Dehghani, Mostafa, et al. "Fidelity-Weighted Learning." In ICLR 2018.
  • Ren, Mengye, et al. "Learning to reweight examples for robust deep learning." In ICML 2018.
  • Fan, Yang, et al. "Learning to Teach." In ICLR 2018.
  • Chang, Haw-Shiuan, et al. "Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples." In NIPS 2017.
Owner
Google
Google ❤️ Open Source
Google
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022