TipToiDog - Tip Toi Dog With Python

Overview

TipToiDog

Was ist dieses Projekt?

Meine 5-jährige Tochter spielt sehr gerne das Quiz Wer kennt alle Hunde. Dabei interessiert sie sich gar nicht so sehr für die Details auf der Rückseite der Quizkarten, sondern hauptsächlich für die Hundenamen. Da sie aber noch nicht lesen kann, kann sie das Quiz nicht alleine machen. Da kam mir die Idee, den TipToi-Stift von Ravensburger dafür einzusetzen, dass sie das Spiel doch alleine spielen kann. Der Stift sollte also die jeweiligen Hundenamen vorlesen. Ich war zuversichtlich, dass es bestimmt paar clevere Leute gibt, die herausgefunden haben, wie man den Stift auch für eigene Projekt einsetzen kann. Und siehe da: Es gibt das geniale Tool tttool. Hiermit konnte ich das Projekt in ca. einem Tag umsetzen. Desweiteren war noch ein bisschen Python-Coding notwendig.

Wie funktioniert der TipToi-Stift überhaupt?

Dies wird hier hervorragend beschrieben und daher erlaube ich mir die Faulheit, die Funktionsweise nicht näher zu erläutern. Es sei nur so viel gesagt: Der Stift arbeitet optisch und erkennt so genannte OID-Codes. Jeder Hundename muss nun also einem OID-Code zu geordnet werden und dann jedem OID-Code noch eine entsprechende Audio-Datei, die den Hundenamen enthält.

Welche Dateien sind für was?

Wenn ihr direkt damit loslegen wollt, das Quiz um die TipToi-Funktion zu erweitern, so braucht ihr lediglich 2 Dateien:

  • dogs.gme: Diese Datei enthält alle Sounddateien und die notwendigen Information für den TipToi, um das Hundequiz auf diesem zu spielen. Hier könnt ihr genauer nachlesen, wenn ihr das Konzept der gme-Datei genauer verstehen wollt. Diese Datei könnt ihr direkt auf den Stift schieben.
  • dogs_box.pdf: In dieser Datei sind die Steuerfelder und alle Hunde-Namen in OID-Code abgebildet, wobei in jedem Codefeld ein Knochen eingebettet ist. Diese Datei muss ausgedruckt werden und dann jeder Knochen auf das entsprechende Hundekarte geklebt werden. Folgendes Bild zeigt 3 Hundekarten mit aufgeklebtem "OID-Knochen":

Die Steuerzeichen (Stop habe ich nicht verwendet), sind auf der Box aufgeklebt:

Beim Drucken liegt leider der Teufel im Detail, [siehe auch hier](https://github.com/entropia/tip-toi-reveng/wiki/Printing). Ich habe es mit meinem Drucker (Brother HL-L2370DN) mit den folgenden Druckeinstellungen gut hinbekommen:
  • Auflösung: HQ1200
  • Druckeinstellungen: Manuell
    • Helligkeit: 0
    • Konstrast: +34
    • Grafikqualität: Text
    • Rest wie vorgegeben

Auf weiße Etiketten spricht mein TipToi hervorragend an. Allerdings hatte ich den Ehrgeiz die Knochen auf transparente Etiketten zu drucken. Das klappt zwar immer noch, aber nicht mehr ganz so gut. Achtung: Der Druck darf nicht skaliert werden!

Wenn ihr das Projekt modifizieren wollt, also vielleicht die Audiodateien verändern wollt, weil sie euch nicht gefallen, oder ihr eigene Hundekarten ergänzen wollt, braucht ihr folgende Dateien, wobei die Reihenfolge, in der ich sie hier nennen, einen gewissen Ablauf beschreibt.

  • dogs.xls: Diese Excel-Tabelle enthält drei Spalten:
    1. Der Hundename in exakter Schreibweise
    2. Ein Dateiname (ohne Leerzeichen), der den Hundenamen repräsentiert.
    3. Die Sprache (repräsentiert durch ein Kürzel), in der später die Audio-Datei für den Hundenamen generiert werden soll
  • gen_dogs.py: Dieses Skript lädt diese Excel-Datei ein und lässt eine Schleife über alle Hundenamen laufen. Hierbei wird mit Hilfe der Google Text-to-Speech-API eine Audiodatei für jeden Hundenamen erzeugt. Desweiteren wird eine entsprechende yaml-Datei erzeugt. Diese Datei benötigt das tttool dann später um zu wissen für welche Ereignisse/Begriffe (hier: die Hundename) welche Aktionen (hier: Abspielen des Hundenamens) generiert und OID codiert werden sollen.
  • hello_dog.ogg: Diese ist eine akustische Begrüßung, die ich eingespielt habe und die ertönt, wenn das Start-Symbol gewählt wird. Sie kann nach Belieben durch eine andere Datei ersetzt werden. Eure Kinder freuen sich bestimmt, wenn sie eure eigene Stimme zu hören bekommen.
  • gen_gme.bat: Dieses Batch-Skript erzeugt aus der yaml-Datei und den Soundfiles die entsprechende gme-Datei
  • gen_oid.bat: Dieses Batch-Skript erzeugt die OID-Codes in einer Tabelle im PDF-Format. Die Größe habe ich entsprechend so gewählt, dass der Knochen auf der Quizkarte nicht zu viel Platz einnimmt. Außerdem habe ich die Pixel-Größe auf 3 (statt wie standardmäßig 2) eingestellt. Dadurch hat mein Stift die Codes überhaupt erst erkannt.
  • overlay.docx: In diesem Word-Dokument sind Hundeknochen tabellarisch im gleichen Raster angeordnet, wie die OID-Codes in dem PDF, was durch das vorherige Skript erstellt worden ist. Daraus muss eine PDF-Datei erstellt werden (auch hier nicht skalieren!)
  • merge_pdf.py: Dieses Python-Skript verschmelzt die dogs.pdf mit der overlay.pdf zu dogs_box.pdf, die dann gemäß obiger Beschreibung ausgedruckt werden kann.

Viel Spaß beim Verwenden und Modifizieren! Über eine Rückmeldung, wenn ihr es erfolgreich umgesetzt habt, würde ich mich freuen!

Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022