Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Overview

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification (2021) by Hai Phan and Anh Nguyen.

If you use this software, please consider citing:

@article{hai2021deepface,
  title={DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification},
  author={Hai Phan, Anh Nguyen},
  journal={arXiv preprint arXiv:2112.04016},
  year={2021}
}

1. Requirements

Python >= 3.5
Pytorch > 1.0
Opencv >= 3.4.4
pip install tqmd

2. Download datasets and pretrained models

  1. Download LFW, out-of-distribution (OOD) LFW test sets, and pretrained models: Google Drive

  2. Create the following folders:

mkdir data
mkdir pretrained
  1. Extract LFW datasets (e.g. lfw_crop_96x112.tar.gz) to data/
  2. Copy models (e.g. resnet18_110.pth) to pretrained/

3. How to run

3.1 Run examples

  • Run testing LFW images

    • -mask, -sunglass, -crop: flags for using corresponding OOD query images (i.e., faces with masks or sunglasses or randomly-cropped images).
    bash run_test.sh
    
  • Run demo: The demo gives results of top-5 images of stage 1 and stage 2 (including flow visualization of EMD).

    • -mask: image retrieval using a masked-face query image given a gallery of normal LFW images.
    • -sunglass and -crop: similar to the setup of -mask.
    • The results will be saved in the results/demo directory.
    bash run_demo.sh
    
  • Run retrieval using the full LFW gallery

    • Set the argument args.data_folder to data in .sh files.

3.2 Reproduce results

  • Make sure lfw-align-128 and lfw-align-128-crop70 dataset in data/ directory (e.g. data/lfw-align-128-crop70), ArcFace [2] model resnet18_110.pth in pretrained/ directory (e.g. pretrained/resnet18_110.pth). Run the following commands to reproduce the Table 1 results in our paper.

    • Arguments:

      • Methods can be apc, uniform, or sc
      • -l: 4 or 8 for 4x4 and 8x8 respectively.
      • -a: alpha parameter mentioned in the paper.
    • Normal LFW with 1680 classes:

    python test_face.py -method apc -fm arcface -d lfw_1680 -a -1 -data_folder data -l 4
    
    • LFW-crop:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -crop 
    
    • Note: The full LFW dataset have 5,749 people for a total of 13,233 images; however, only 1,680 people have two or more images (See LFW for details). However, in our normal LFW dataset, the identical images will not be considered in face identification. So, the difference between lfw and lfw_1680 is that the lfw setup uses the full LFW (including people with a single image) but the lfw_1680 uses only 1,680 people who have two or more images.
  • For other OOD datasets, run the following command:

    • LFW-mask:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -mask 
    
    • LFW-sunglass:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -sunglass 
    

3.3 Run visualization with two images

python visualize_faces.py -method [methods] -fm [face models] -model_path [model dir] -in1 [1st image] -in2 [2nd image] -weight [1/0: showing weight heatmaps] 

The results are in results/flow and results/heatmap (if -weight flag is on).

3.4 Use your own images

  1. Facial alignment. See align_face.py for details.
pip install scikit-image
pip install face-alignment
  • For making face alignment with size of 160x160 for Arcface (128x128) and FaceNet (160x160), the reference points are as follow (see function alignment in align_face.py).
ref_pts = [ [61.4356, 54.6963],[118.5318, 54.6963], [93.5252, 90.7366],[68.5493, 122.3655],[110.7299, 122.3641]]
crop_size = (160, 160)
  1. Create a folder including all persons (folders: name of person) and put it to '/data'
  2. Create a txt file with format: [image_path],[label] of that folder (See lfw file for details)
  3. Modify face loader: Add your txt file in function: get_face_dataloader.

4. License

MIT

5. References

  1. W. Zhao, Y. Rao, Z. Wang, J. Lu, Zhou. Towards interpretable deep metric learning with structural matching, ICCV 2021 DIML
  2. J. Deng, J. Guo, X. Niannan, and StefanosZafeiriou. Arcface: Additive angular margin loss for deepface recognition, CVPR 2019 Arcface Pytorch
  3. H. Wang, Y. Wang, Z. Zhou, X. Ji, DihongGong, J. Zhou, Z. Li, W. Liu. Cosface: Large margin cosine loss for deep face recognition, CVPR 2018 CosFace Pytorch
  4. F. Schroff, D. Kalenichenko, J. Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR 2015 FaceNet Pytorch
  5. L. Weiyang, W. Yandong, Y. Zhiding, L. Ming, R. Bhiksha, S. Le. SphereFace: Deep Hypersphere Embedding for Face Recognition, CVPR 2017 sphereface, sphereface pytorch
  6. Chi Zhang, Yujun Cai, Guosheng Lin, Chunhua Shen. Deepemd: Differentiable earth mover’s distance for few-shotlearning, CVPR 2020 paper
Owner
Anh M. Nguyen
Learning in the deep...
Anh M. Nguyen
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022