Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

Overview

A Comprehensive Experimental Evaluation for Database Configuration Tuning

This is the source code to the paper "Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation". Please refer to the paper for the experimental details.

Table of Content

An Efficient Database Configuration Tuning Benchmark via Surrogate

Through the benchmark, you can evaluate the tuning optimizers' performance with minimum overhead.

Quick installation & Run

  1. Preparations: Python == 3.7

  2. Install packages and download the surrogate model

    pip install -r requirements.txt
    pip install .

The surrogate models can be found in the Google drive. To easily run the tuning benchmark, you can download the surrogate models and place them in the fold autotune/tuning_benchmark/surrogate.

  1. Run the benchmark. We use optimization over the configuration space of JOB as an example.
python run_benchmark.py --method=VBO --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job  --lhs_log=result/job_5knobs_vbo.res
python run_benchmark.py --method=MBO   --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_mbo.res
python run_benchmark.py --method=SMAC  --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job   --lhs_log=result/job_5knobs_smac.res
python run_benchmark.py --method=TPE --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job  --lhs_log=result/job_5knobs_tpe.res
python run_benchmark.py --method=TURBO --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_turbo.res --tr_init 
python run_benchmark.py --method=GA --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_ga.res 

Data Description

You can find all the training data for the tuning benchmark in autotune/tuning_benchmark/data.

Experimental Evaluation

Environment Installation

In our experiments, the operating system is Linux 4.9. We conduct experimets on MySQL 5.7.19.

  1. Preparations: Python == 3.7

  2. Install packages

    pip install -r requirements.txt
    pip install .
  3. Download and install MySQL 5.7.19 and boost

    wget http://sourceforge.net/projects/boost/files/boost/1.59.0/boost_1_59_0.tar.gz
    wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-boost-5.7.19.tar.gz
    
    sudo cmake . -DCMAKE_INSTALL_PREFIX=PATH_TO_INSTALL -DMYSQL_DATADIR=PATH_TO_DATA -DDEFAULT_CHARSET=utf8 -DDEFAULT_COLLATION=utf8_general_ci -DMYSQL_TCP_PORT=3306 -DWITH_MYISAM_STORAGE_ENGINE=1 -DWITH_INNOBASE_STORAGE_ENGINE=1 -DWITH_ARCHIVE_STORAGE_ENGINE=1 -DWITH_BLACKHOLE_STORAGE_ENGINE=1 -DWITH_MEMORY_STORAGE_ENGINE=1 -DENABLE_DOWNLOADS=1 -DDOWNLOAD_BOOST=1 -DWITH_BOOST=PATH_TO_BOOST;
    sudo make -j 16;
    sudo make install;

Workload Preparation

SYSBENCH

Download and install

git clone https://github.com/akopytov/sysbench.git
./autogen.sh
./configure
make && make install

Load data

sysbench --db-driver=mysql --mysql-host=$HOST --mysql-socket=$SOCK --mysql-port=$MYSQL_PORT --mysql-user=root --mysql-password=$PASSWD --mysql-db=sbtest --table_size=800000 --tables=150 --events=0 --threads=32 oltp_read_write prepare > sysbench_prepare.out

OLTP-Bench

We install OLTP-Bench to use the following workload: TPC-C, SEATS, Smallbank, TATP, Voter, Twitter, SIBench.

  • Download
git clone https://github.com/oltpbenchmark/oltpbench.git
  • To run oltpbenchmark outside the folder, modify the following file:

    • ./src/com/oltpbenchmark/DBWorkload.java (Line 85)

      pluginConfig = new XMLConfiguration("PATH_TO_OLTPBENCH/config/plugin.xml"); # modify this
      
    • ./oltpbenchmark

      
      #!/bin/bash
      
      java -Xmx8G -cp `$OLTPBENCH_HOME/classpath.sh bin` -Dlog4j.configuration=$OLTPBENCH_HOME/log4j.properties com.oltpbenchmark.DBWorkload $@
      
      
    • ./classpath.sh

      #!/bin/bash
      
      echo -ne "$OLTPBENCH_HOME/build"
      
      for i in `ls $OLTPBENCH_HOME/lib/*.jar`; do
      
          # IMPORTANT: Make sure that we do not include hsqldb v1
      
          if [[ $i =~ .*hsqldb-1.* ]]; then
      
              continue
      
          fi
      
          echo -ne ":$i"
      
      done
      
  • Install

    ant bootstrap
    ant resolve
    ant build

Join-Order-Benchmark (JOB)

Download IMDB Data Set from http://homepages.cwi.nl/~boncz/job/imdb.tgz.

Follow the instructions of https://github.com/winkyao/join-order-benchmark to load data into MySQL.

Environment Variables

Before running the experiments, the following environment variables require to be set.

export SYSBENCH_BIN=PATH_TO_sysbench/src/sysbench
export OLTPBENCH_BIN=PATH_TO_oltpbench/oltpbenchmark
export MYSQLD=PATH_TO_mysqlInstall/bin/mysqld
export MYSQL_SOCK=PATH_TO_mysql/base/mysql.sock
export MYCNF=PATH_TO_autotune/template/experiment_normandy.cnf
export DATADST=PATH_TO_mysql/data
export DATASRC=PATH_TO_mysql/data_copy

Experiments Design

All optimization methods are listed as follows:

Method String of ${METHOD}
Vanilla BO VBO
Mixed-Kernel BO MBO
Sequential Model-based Algorithm Configuration SMAC
Tree-structured Parzen Estimator TPE
Trust-Region BO TURBO
Deep Deterministic Policy Gradient DDPG
Genetic Algorithm GA

Exp.1: Tuning improvement over knob set generated by different important measurements.

Compared importance measurements: lasso, gini, fanova, ablation, shap.

To conduct the experiment shown in Figure 3(a), the script is as follows. Please specify ${lhs_log}.

python train.py --knobs_config=experiment/gen_knobs/JOB_lasso.json    --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_gini.json     --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_fanova.json   --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_ablation.json --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_shap.jso      --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}

python train.py --knobs_config=experiment/gen_knobs/JOB_lasso.json    --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_gini.json     --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_fanova.json   --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_ablation.json --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_shap.jso      --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}

To conduct the experiments in (b), (c), and (d), modify ${knobs_num},${method},${workload}, ${dbname}, and ${y_variable}, where

  • ${knobs_num} = 5, 20

  • ${method} = VBO, DDPG

  • ${workload} = job, sysbench

    • if ${workload} == job, then ${dbname} = imdbload, ${y_variable}=lat
    • if ${workload} == sysbench, then ${dbname} =sbtest , ${y_variable}=tps

Note${knobs_config} indicates the configuration file where knobs are ranked by importance.

  • We provide the configuration file generated on our VM: experiment/gen_knobs/${workload}_${measure}.json.
  • You can also generate new configuration file with samples in your environment.

Exp.2: Performance improvement and tuning cost when increasing the number of tuned knobs.

To conduct the experiment shown in Figure 5 (a) and 5 (b), the script is as follows.

python train.py --method=VBO --workload=job --dbname=imdbload --y_variable=lat --lhs_num=10 --knobs_num=${knobs_num} --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=VBO --workload=sysbench --dbname=sbtest --y_variable=tps --lhs_num=10 --knobs_num=${knobs_num} --knobs_config=experiment/gen_knobs/SYSBENCH_shap.json --lhs_log=${lhs_log}

Please specify ${knobs_num} and ${lhs_log}, where

  • ${knobs_num} = 5, 10, 15, 20, 30, 50, 70, 90, 197

Exp.3: Incremental Knob Selection.

Compared methods: 5 Knobs, 20 Knobs, increase, decrease.

To conduct the experiment shown in Figure 6(a), the script is as follows. Please specify ${lhs_log}.

python train.py --method=VBO       --knobs_num=5  --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=VBO       --knobs_num=20 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=increase --knobs_num=-1 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=decrease   --knobs_num=-1 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}

To conduct the experiment shown in (b), you can

  • replace --workload=JOB --y_variable=lat with --workload=sysbench --y_variable=tps

Exp.4: Optimizer comparision on different configuration space.

Compared optimizers: VBO, MBO, SMAC, TPE, TURBO, DDPG, GA.

To conduct the experiment shown in Figure 7(a), the script is as follows. Please specify ${lhs_log}.

python train.py --method=VBO   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=MBO   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=SMAC  --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=TPE   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=TURBO --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=DDPG  --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=GA    --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}

To conduct the experiment shown in (b), (c), (d), (e), (f), and (g), you can

  • replace --knobs_num=5 with--knobs_num=20 or --knobs_num=197
  • replace --workload=JOB --y_variable=lat --dbname=imdbload with --workload=sysbench --y_variable=tps --dbname=sbtest

Exp.5: Comparison experiment for knobs heterogeneity.

Compared optimizers: VBO, MBO, SMAC, DDPG.

To conduct the experiment shown in Figure 8(a) and (b), the script is as follows.

python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/JOB_continuous.json --lhs_log=${lhs_log} --lhs_num=10
python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/JOB_heterogeneous.json --lhs_log=${lhs_log} --lhs_num=10

Please specify ${method}, ${dbname} and ${lhs_log}, where

  • ${method} is one of VBO, MBO, SMAC, DDPG.

Exp.6: Algorithm overhead comparison.

Compared optimizers: MBO, SMAC, TPE, TURBO, DDPG, GA.

To conduct the experiment shown in Figure 8(a) and (b), the script is as follows.

python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/job_shap.json --lhs_log=${lhs_log} --lhs_num=10

Please specify ${method}, ${dbname} and ${lhs_log}, where

  • ${method} is one of MBO, SMAC, TPE, TURBO, DDPG, GA.

Note if you have already done Exp.4, you can skip running the above script and analyze log files in script/log/.

Exp.7: Transfering methods comparison.

Compared methods: RGPE-MBO, RGPE-SMAC, MAP-MBO, MAP-SMAC, FineTune-DDPG

To conduct the experiment shown in Table 9, there are two steps:

  • Pre-train on source workloads (Smallbank, SIBench, Voter, Seats, TATP);
  • Validate on target workloads (TPCC, SYSBENCH, Twitter).

Scripts for pre-trains is similar to the ones for Exp.4

To validate on target workloads, the scripts are as follows.

python train.py --method=MBO  --RGPE --source_repo=${repo}         --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=SMAC --RGPE --source_repo=${repo}         --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10  
python train.py --method=MBO  --workload_map --source_repo=${repo} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=SMAC --workload_map --source_repo=${repo} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=DDPG --params=model_params/${ddpg_params} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 

Note that

  • for RGPE- methods, you should specify --RGPE --source_repo=${repo}
  • for MAP- methods, you should specify --workload_map --source_repo=${repo}
  • for FineTune-DDPG, you should specify --params=model_params/${ddpg_params}

Project Code Overview

  • autotune/tuner.py : the implemented optimization methods.
  • autotune/dbenv.py : the interacting functions with database.
  • script/train.py : the python script to start an experiment.
  • script/experiment/gen_knob : the knob importance ranking files generated by different methods.
Owner
DAIR Lab
Data and Intelligence Research (DAIR) Lab @ Peking University
DAIR Lab
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023