FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

Overview

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

声明:

本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关!

简介

本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现有网络结构实现一个完整的落地项目,仅供人工智能自动控制等方面的学习研究,不可用于非法用途!!!

环境配置

1.软件环境
使用conda导入yolo.yaml

name: yolo
channels:
- pytorch
- conda-forge
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/pro
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
- defaults
dependencies:
- absl-py=0.13.0=py38haa95532_0
- aiohttp=3.7.4=py38h2bbff1b_1
- async-timeout=3.0.1=py38haa95532_0
- attrs=21.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- blinker=1.4=py38haa95532_0
- bottleneck=1.3.2=py38h2a96729_1
- brotli=1.0.9=ha925a31_2
- brotlipy=0.7.0=py38h2bbff1b_1003
- ca-certificates=2021.5.30=h5b45459_0
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2021.5.30=py38haa244fe_0
- cffi=1.14.6=py38h2bbff1b_0
- chardet=3.0.4=py38haa95532_1003
- click=8.0.1=pyhd3eb1b0_0
- cryptography=3.4.7=py38h71e12ea_0
- cudatoolkit=10.2.89=h74a9793_1
- cycler=0.10.0=py38_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=hd328e21_0
- google-auth=1.33.0=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.1=py_2
- grpcio=1.35.0=py38hc60d5dd_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=58.2=ha925a31_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=3.10.0=py38haa95532_0
- intel-openmp=2021.3.0=haa95532_3372
- jpeg=9b=hb83a4c4_2
- kiwisolver=1.3.1=py38hd77b12b_0
- libpng=1.6.37=h2a8f88b_0
- libprotobuf=3.17.2=h23ce68f_1
- libtiff=4.2.0=hd0e1b90_0
- libuv=1.40.0=he774522_0
- lz4-c=1.9.3=h2bbff1b_1
- markdown=3.3.4=py38haa95532_0
- matplotlib=3.4.2=py38haa95532_0
- matplotlib-base=3.4.2=py38h49ac443_0
- mkl=2021.3.0=haa95532_524
- mkl-service=2.4.0=py38h2bbff1b_0
- mkl_fft=1.3.0=py38h277e83a_2
- mkl_random=1.2.2=py38hf11a4ad_0
- msys2-conda-epoch=20160418=1
- multidict=5.1.0=py38h2bbff1b_2
- munkres=1.1.4=py_0
- ninja=1.7.2=0
- numexpr=2.7.3=py38hb80d3ca_1
- numpy=1.20.3=py38ha4e8547_0
- numpy-base=1.20.3=py38hc2deb75_0
- oauthlib=3.1.1=pyhd3eb1b0_0
- olefile=0.46=py_0
- openssl=1.1.1k=h8ffe710_1
- pandas=1.3.1=py38h6214cd6_0
- pillow=8.3.1=py38h4fa10fc_0
- pip=21.0.1=py38haa95532_0
- protobuf=3.17.2=py38hd77b12b_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pyjwt=2.1.0=py38haa95532_0
- pyopenssl=20.0.1=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pyqt=5.9.2=py38ha925a31_4
- pysocks=1.7.1=py38haa95532_0
- python=3.8.11=h6244533_1
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-mss=6.1.0=pyhd3deb0d_0
- python_abi=3.8=2_cp38
- pytorch=1.9.0=py3.8_cuda10.2_cudnn7_0
- pytz=2021.1=pyhd3eb1b0_0
- pyyaml=5.4.1=py38h2bbff1b_1
- qt=5.9.7=vc14h73c81de_0
- requests=2.25.1=pyhd3eb1b0_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scipy=1.6.2=py38h66253e8_1
- seaborn=0.11.2=pyhd3eb1b0_0
- setuptools=52.0.0=py38haa95532_0
- sip=4.19.13=py38ha925a31_0
- six=1.16.0=pyhd3eb1b0_0
- sqlite=3.36.0=h2bbff1b_0
- tensorboard=2.5.0=py_0
- tensorboard-plugin-wit=1.6.0=py_0
- tk=8.6.10=he774522_0
- torchaudio=0.9.0=py38
- torchvision=0.10.0=py38_cu102
- tornado=6.1=py38h2bbff1b_0
- tqdm=4.62.1=pyhd3eb1b0_1
- typing-extensions=3.10.0.0=hd3eb1b0_0
- typing_extensions=3.10.0.0=pyh06a4308_0
- urllib3=1.26.6=pyhd3eb1b0_1
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.37.0=pyhd3eb1b0_0
- win_inet_pton=1.1.0=py38haa95532_0
- wincertstore=0.2=py38_0
- xz=5.2.5=h62dcd97_0
- yaml=0.2.5=he774522_0
- yarl=1.6.3=py38h2bbff1b_0
- zipp=3.5.0=pyhd3eb1b0_0
- zlib=1.2.11=h62dcd97_4
- zstd=1.4.9=h19a0ad4_0
- pip:
  - colorama==0.4.4
  - mouseinfo==0.1.3
  - opencv-python==4.5.3.56
  - polygon3==3.0.9.1
  - pyautogui==0.9.53
  - pygetwindow==0.0.9
  - pymsgbox==1.0.9
  - pyperclip==1.8.2
  - pyrect==0.1.4
  - pyscreeze==0.1.27
  - pytweening==1.0.3
  - tensorboard-data-server==0.6.1
  - thop==0.0.31-2005241907
prefix: D:\Miniconda3\envs\yolo

2.硬件环境

本项目中控制鼠标移动时使用了“易键鼠”。(也可以自行修改相关代码,使用pyautogui,pywin32等库来控制键盘鼠标)

使用方法

1.训练模型。

  • 本项目的训练方法请查看yolov5相关文档。

2.使用。

  • 启动前在utils/CFUtils.py文件中修改屏幕分辨率,检测框范围等参数。
  • 如需更换模型,请在CFdetect.py文件中修改模型位置。
  • 修改好相关参数后直接运行Main.py启动本项目。
Owner
Fabian
No Bio
Fabian
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022