FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

Overview

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

声明:

本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关!

简介

本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现有网络结构实现一个完整的落地项目,仅供人工智能自动控制等方面的学习研究,不可用于非法用途!!!

环境配置

1.软件环境
使用conda导入yolo.yaml

name: yolo
channels:
- pytorch
- conda-forge
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/pro
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
- defaults
dependencies:
- absl-py=0.13.0=py38haa95532_0
- aiohttp=3.7.4=py38h2bbff1b_1
- async-timeout=3.0.1=py38haa95532_0
- attrs=21.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- blinker=1.4=py38haa95532_0
- bottleneck=1.3.2=py38h2a96729_1
- brotli=1.0.9=ha925a31_2
- brotlipy=0.7.0=py38h2bbff1b_1003
- ca-certificates=2021.5.30=h5b45459_0
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2021.5.30=py38haa244fe_0
- cffi=1.14.6=py38h2bbff1b_0
- chardet=3.0.4=py38haa95532_1003
- click=8.0.1=pyhd3eb1b0_0
- cryptography=3.4.7=py38h71e12ea_0
- cudatoolkit=10.2.89=h74a9793_1
- cycler=0.10.0=py38_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=hd328e21_0
- google-auth=1.33.0=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.1=py_2
- grpcio=1.35.0=py38hc60d5dd_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=58.2=ha925a31_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=3.10.0=py38haa95532_0
- intel-openmp=2021.3.0=haa95532_3372
- jpeg=9b=hb83a4c4_2
- kiwisolver=1.3.1=py38hd77b12b_0
- libpng=1.6.37=h2a8f88b_0
- libprotobuf=3.17.2=h23ce68f_1
- libtiff=4.2.0=hd0e1b90_0
- libuv=1.40.0=he774522_0
- lz4-c=1.9.3=h2bbff1b_1
- markdown=3.3.4=py38haa95532_0
- matplotlib=3.4.2=py38haa95532_0
- matplotlib-base=3.4.2=py38h49ac443_0
- mkl=2021.3.0=haa95532_524
- mkl-service=2.4.0=py38h2bbff1b_0
- mkl_fft=1.3.0=py38h277e83a_2
- mkl_random=1.2.2=py38hf11a4ad_0
- msys2-conda-epoch=20160418=1
- multidict=5.1.0=py38h2bbff1b_2
- munkres=1.1.4=py_0
- ninja=1.7.2=0
- numexpr=2.7.3=py38hb80d3ca_1
- numpy=1.20.3=py38ha4e8547_0
- numpy-base=1.20.3=py38hc2deb75_0
- oauthlib=3.1.1=pyhd3eb1b0_0
- olefile=0.46=py_0
- openssl=1.1.1k=h8ffe710_1
- pandas=1.3.1=py38h6214cd6_0
- pillow=8.3.1=py38h4fa10fc_0
- pip=21.0.1=py38haa95532_0
- protobuf=3.17.2=py38hd77b12b_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pyjwt=2.1.0=py38haa95532_0
- pyopenssl=20.0.1=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pyqt=5.9.2=py38ha925a31_4
- pysocks=1.7.1=py38haa95532_0
- python=3.8.11=h6244533_1
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-mss=6.1.0=pyhd3deb0d_0
- python_abi=3.8=2_cp38
- pytorch=1.9.0=py3.8_cuda10.2_cudnn7_0
- pytz=2021.1=pyhd3eb1b0_0
- pyyaml=5.4.1=py38h2bbff1b_1
- qt=5.9.7=vc14h73c81de_0
- requests=2.25.1=pyhd3eb1b0_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scipy=1.6.2=py38h66253e8_1
- seaborn=0.11.2=pyhd3eb1b0_0
- setuptools=52.0.0=py38haa95532_0
- sip=4.19.13=py38ha925a31_0
- six=1.16.0=pyhd3eb1b0_0
- sqlite=3.36.0=h2bbff1b_0
- tensorboard=2.5.0=py_0
- tensorboard-plugin-wit=1.6.0=py_0
- tk=8.6.10=he774522_0
- torchaudio=0.9.0=py38
- torchvision=0.10.0=py38_cu102
- tornado=6.1=py38h2bbff1b_0
- tqdm=4.62.1=pyhd3eb1b0_1
- typing-extensions=3.10.0.0=hd3eb1b0_0
- typing_extensions=3.10.0.0=pyh06a4308_0
- urllib3=1.26.6=pyhd3eb1b0_1
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.37.0=pyhd3eb1b0_0
- win_inet_pton=1.1.0=py38haa95532_0
- wincertstore=0.2=py38_0
- xz=5.2.5=h62dcd97_0
- yaml=0.2.5=he774522_0
- yarl=1.6.3=py38h2bbff1b_0
- zipp=3.5.0=pyhd3eb1b0_0
- zlib=1.2.11=h62dcd97_4
- zstd=1.4.9=h19a0ad4_0
- pip:
  - colorama==0.4.4
  - mouseinfo==0.1.3
  - opencv-python==4.5.3.56
  - polygon3==3.0.9.1
  - pyautogui==0.9.53
  - pygetwindow==0.0.9
  - pymsgbox==1.0.9
  - pyperclip==1.8.2
  - pyrect==0.1.4
  - pyscreeze==0.1.27
  - pytweening==1.0.3
  - tensorboard-data-server==0.6.1
  - thop==0.0.31-2005241907
prefix: D:\Miniconda3\envs\yolo

2.硬件环境

本项目中控制鼠标移动时使用了“易键鼠”。(也可以自行修改相关代码,使用pyautogui,pywin32等库来控制键盘鼠标)

使用方法

1.训练模型。

  • 本项目的训练方法请查看yolov5相关文档。

2.使用。

  • 启动前在utils/CFUtils.py文件中修改屏幕分辨率,检测框范围等参数。
  • 如需更换模型,请在CFdetect.py文件中修改模型位置。
  • 修改好相关参数后直接运行Main.py启动本项目。
Owner
Fabian
No Bio
Fabian
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022