Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Overview

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed

Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Automatic labeling of the intervertebral disc is a difficult task, due to the many challenges such as complex background, the similarity between discs and bone area in MRI imaging, blurry image, and variation in an imaging modality. Precisely localizing spinal discs plays an important role in intervertebral disc labeling. Most of the literature work consider the semantic intervertebral disc labeling as a post-processing step, which applies on the top of the disc localization algorithm. Hence, the semantic intervertebral labeling highly depends on the disc localization algorithm and mostly fails when the localization algorithm cannot detect discs or falsely detects a background area as a disc. In this work, we aimed to mitigate this problem by reformulating the semantic intervertebral disc labeling using the pose estimation technique. If this code helps with your research please consider citing the following papers:

R. Azad, Lucas Rouhier, and Julien Cohen-Adad "Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling", MICCAI Workshop, 2021, download link.

Please consider starring us, if you found it useful. Thanks

Updates

  • 11-8-2021: Source code is available.

Prerequisties and Run

This code has been implemented in python language using Pytorch libarary and tested in ubuntu, though should be compatible with related environment. The required libraries are included in the requiremetns.txt file. Please follow the bellow steps to train and evaluate the model.

1- Download the Spine Generic Public Database (Multi-Subject).
2- Run the create_dataset.py to gather the required data from the Spin Generic dataset.
4- Run prepare_trainset.py to creat the training and validation samples.
Notice: To avoid the above steps we have provided the processed data for all train, validation and test sets here (should be around 150 MB) you can simply download it and continue with the rest steps.
5- Run the main.py to train and evaluate the model. Use the following command with the related arguments to perform the required action:
A- Train and evaluate the model python src/main.py. You can use --att true to use the attention mechanisim.
B- Evaluate the model python src/main.py --evaluate true it will load the trained model and evalute it on the validation set.
C- You can run make_res_gif.py to creat a prediction video using the prediction images generated by main.py for the validation set.
D- You can change the number of stacked hourglass by --stacks argument. For more details check the arguments section in main.py.
6- Run the test.py to evaluate the model on the test set alongside with the metrics.

Quick Overview

Diagram of the proposed method

Visualzie the attention channel

To extract and show the attention channel for the related input sample, we registered the attention channel by the forward hook. Thus with the following command, you can visualize the input sample, estimated vertebral disc location, and the attention channel.
python src/main.py --evaluate true --attshow true .

Attention visualization

Sample of detection result on the test set

Below we illustrated a sample of vertebral disc detection on the test set.

Test sample

Model weights

You can download the learned weights for each modality in the following table.

Method Modality Learned weights
Proposed model without attention T1w download
Proposed model without attention T2w download
Proposed model with attention T1w download
Proposed model with attention T2w download
Owner
Reza Azad
Deep Learning and Computer Vision Researcher
Reza Azad
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
MohammadReza Sharifi 27 Dec 13, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023