Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

Related tags

Deep LearningDGSR
Overview

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation

Requirements

  1. OS: Ubuntu 16.04 or higher version
  2. python3.7
  3. Supported (tested) CUDA Versions: V10.2
  4. python modules: refer to the modules in requirements.txt

Code Structure

  1. The entry script for training and evaluation is: train.py
  2. The config file is: config.yaml
  3. The script for data preprocess and dataloader: utility.py
  4. The model folder: ./model/.
  5. The experimental logs in tensorboard-format are saved in ./logs.
  6. The experimental logs in txt-format are saved in ./performance.
  7. The best model for each experimental setting is saved in ./model_saves.
  8. The recommendation results in the evaluation are recorded in ./results.
  9. The ./logs, ./performance, ./model_saves, ./results files will be generated automatically when first time runing the codes.
  10. The script get_all_the_res.py is used to print the performance of all the trained and tested models on the screen.

How to Run

  1. Download the dataset, decompress it and put it in the top directory with the following command. Note that the downloaded files include two datasets ulilized in the paper: iFashion and amazon_fashion.

    tar zxvf dgsr_dataset.tar.gz. 
    
  2. Settings in the configure file config.yaml are basic experimental settings, which are usually fixed in the experiments. To tune other hyper-parameters, you can use command line to pass the parameters. The command line supported hyper-parameters including: the dataset (-d), sequence length (-l) and embedding size (-e). You can also specify which gpu device (-g) to use in the experiments.

  3. Run the training and evaluation with the specified hyper-parameters by the command:

    python train.py -d=ifashion -l=5 -e=50 -g=0. 
    
  4. During the training, you can monitor the training loss and the evaluation performance by Tensorboard. You can get into ./logs to track the curves of your training and evaluation with the following command:

    tensorboard --host="your host ip" --logdir=./
    
  5. The performance of the model is saved in ./performance. You can get into the folder and check the detailed training process of any finished experiments (Compared with the tensorboard log save in ./logs, it is just the txt-version human-readable training log). To quickly check the results for all implemented experiments, you can also print the results of all experiments in a table format on the terminal screen by running:

    python get_all_the_res.py
    
  6. The best model will be saved in ./model_saves.

Owner
Yujuan Ding
Yujuan Ding
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021