Towards uncontrained hand-object reconstruction from RGB videos

Related tags

Deep Learninghoman
Overview

Towards uncontrained hand-object reconstruction from RGB videos

drawingdrawingdrawing

Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid

Table of Content

Demo

Open In Colab

Setup

Environment setup

Note that you will need a reasonably recent GPU to run this code.

We recommend using a conda environment:

conda env create -f environment.yml
conda activate phosa16

External Dependencies

Detectron2, NMR, FrankMocap

mkdir -p external
git clone --branch v0.2.1 https://github.com/facebookresearch/detectron2.git external/detectron2
pip install external/detectron2
mkdir -p external
git clone https://github.com/hassony2/multiperson.git external/multiperson
pip install external/multiperson/neural_renderer
cd external/multiperson/sdf
pip install external/multiperson/sdf
mkdir -p external
git clone https://github.com/hassony2/frankmocap.git external/frankmocap
sh scripts/install_frankmocap.sh

Install MANO

Follow the instructions below to install MANO
  • Go to MANO website: http://mano.is.tue.mpg.de/
  • Create an account by clicking *Sign Up* and provide your information
  • Download Models and Code (the downloaded file should have the format mano_v*_*.zip). Note that all code and data from this download falls under the MANO license (see http://mano.is.tue.mpg.de/license).
  • Unzip and copy the content of the *models* folder into the extra_data/mano folder

Install SMPL-X

Follow the instructions below to install SMPL-X

Download datasets

HO-3D

Download the dataset following the instructions on the official project webpage.

This code expects to find the ho3d root folder at local_data/datasets/ho3d

Core50

Follow instructions below to setup the Core50 dataset
  • Download the Object models from ShapeNetCorev2
    • Go to https://shapenet.org and create an account
    • Go to the download ShapeNet page
    • You will need the "Archive of ShapeNetCore v2 release" (~25GB)
    • unzip to local_data folder by adapting the command
      • unzip /path/to/ShapeNetCore.v2.zip -d local_data/datasets/ShapeNetCore.v2/

Running the Code

Check installation

Make sure your file structure after completing all the Setup steps, your file structure in the homan folder looks like this.

# Installed datasets
local_data/
  datasets/
    ho3d/
    core50/
    ShapeNetCore.v2/
    epic/
# Auxiliary data needed to run the code
extra_data/
  # MANO data files
  mano/
    MANO_RIGHT.pkl
    ...
  smpl/
    SMPLX_NEUTRAL.pkl

Start fitting

Core50

Step 1

  • Pre-processing images
  • Joint optimization with coarse interaction terms
python fit_vid_dataset.py --dataset core50 --optimize_object_scale 0 --result_root results/core50/step1

Step 2

  • Joint optimization refinement
python fit_vid_dataset.py --dataset core50 --split test --lw_collision 0.001 --lw_contact 1 --optimize_object_scale 0 --result_root results/core50/step2 --resume results/core50/step1

HO3d

Step 1

  • Pre-processing images
  • Joint optimization with coarse interaction terms
python fit_vid_dataset.py --dataset ho3d --split test --optimize_object_scale 0 --result_root results/ho3d/step1

Step 2

  • Joint optimization refinement
python fit_vid_dataset.py --dataset ho3d --split test --lw_collision 0.001 --lw_contact 1 --optimize_object_scale 0 --result_root results/ho3d/step2 --resume results/ho3d/step1

Acknowledgements

PHOSA

The code for this project is heavily based on and influenced by Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild (PHOSA)] by Jason Y. Zhang*, Sam Pepose*, Hanbyul Joo, Deva Ramanan, Jitendra Malik, and Angjoo Kanazawa, ECCV 2020

Consider citing their work !

@InProceedings{zhang2020phosa,
    title = {Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild},
    author = {Zhang, Jason Y. and Pepose, Sam and Joo, Hanbyul and Ramanan, Deva and Malik, Jitendra and Kanazawa, Angjoo},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2020},
}

Funding

This work was funded in part by the MSR-Inria joint lab, the French government under management of Agence Nationale de la Recherche as part of the ”Investissements d’avenir” program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute) and by Louis Vuitton ENS Chair on Artificial Intelligence.

Other references

If you find this work interesting, you will certainly be also interested in the following publication:

To keep track of recent publications take a look at awesome-hand-pose-estimation by Xinghao Chen.

License

Note that our code depends on other libraries, including SMPL, SMPL-X, MANO which each have their own respective licenses that must also be followed.

Owner
Yana
PhD student at Inria Paris, focusing on action recognition in first person videos
Yana
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Facebook Research 605 Jan 02, 2023
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022